通过配体工程定制无金属硼团簇的超原子特性和光学行为。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-09-19 Epub Date: 2024-09-04 DOI:10.1021/acs.jpca.4c04808
Jing Wang, Weiliu Fan, Shi-Bo Cheng, Jing Chen
{"title":"通过配体工程定制无金属硼团簇的超原子特性和光学行为。","authors":"Jing Wang, Weiliu Fan, Shi-Bo Cheng, Jing Chen","doi":"10.1021/acs.jpca.4c04808","DOIUrl":null,"url":null,"abstract":"<p><p>It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic B<sub>n</sub> (n = 20 and 40) clusters with CO, PEt<sub>3</sub>, F, NO<sub>2</sub>, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt<sub>3</sub> with F, NO<sub>2</sub>, or CN converted the B<sub>20</sub> cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt<sub>3</sub>, F, NO<sub>2</sub>, and CN ligands to B<sub>20</sub> can significantly modulate the electronic properties of B<sub>20</sub> to realize the formation of metal-free superalkali (B<sub>20</sub>(PEt<sub>3</sub>)<sub>n</sub>, n = 3-5) and superhalogen (B<sub>20</sub>F, B<sub>20</sub>NO<sub>2,</sub> and B<sub>20</sub>CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B<sub>20</sub>(PEt<sub>3</sub>)<sub>3</sub><sup>+</sup>B<sub>20</sub>F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering.\",\"authors\":\"Jing Wang, Weiliu Fan, Shi-Bo Cheng, Jing Chen\",\"doi\":\"10.1021/acs.jpca.4c04808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic B<sub>n</sub> (n = 20 and 40) clusters with CO, PEt<sub>3</sub>, F, NO<sub>2</sub>, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt<sub>3</sub> with F, NO<sub>2</sub>, or CN converted the B<sub>20</sub> cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt<sub>3</sub>, F, NO<sub>2</sub>, and CN ligands to B<sub>20</sub> can significantly modulate the electronic properties of B<sub>20</sub> to realize the formation of metal-free superalkali (B<sub>20</sub>(PEt<sub>3</sub>)<sub>n</sub>, n = 3-5) and superhalogen (B<sub>20</sub>F, B<sub>20</sub>NO<sub>2,</sub> and B<sub>20</sub>CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B<sub>20</sub>(PEt<sub>3</sub>)<sub>3</sub><sup>+</sup>B<sub>20</sub>F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

了解配体的数量和类型如何通过配体工程影响团簇的性质具有重要意义,因为这些知识对于合理设计和优化功能材料至关重要。本文基于密度泛函理论(DFT)计算,系统地探讨了含有 CO、PEt3、F、NO2 和 CN 配体的非金属 Bn(n = 20 和 40)团簇的几何结构、结合能和电子特性。我们的研究结果表明,当 CO 配体连接到这两种硼团簇上时,它们起着电子供体的作用,而在与金属氧化物和金属铬化物团簇的相互作用中,它们则起着电子受体的作用。这就强调了在使用配体进行修饰时,必须考虑宿主团簇的固有特性。此外,还观察到用 F、NO2 或 CN 取代 PEt3 可使 B20 团簇从电子受体转变为电子供体,从而证明了通过选择适当的配体调整硼团簇氧化还原特性的多功能性。有趣的是,将 PEt3、F、NO2 和 CN 配体连接到 B20 上可以显著调节 B20 的电子特性,从而形成无金属的超碱(B20(PEt3)n,n = 3-5)和超卤素(B20F、B20NO2 和 B20CN)簇。此外,还分析了电荷转移复合物 B20(PEt3)3+B20F 的结构、稳定性和光吸收。该复合物已被确定为一种高效的可见光收集材料。我们的研究结果深入揭示了配体变化对硼团簇功能的影响,为通过配体工程设计具有定制团簇特性的先进材料提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering.

Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering.

It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic Bn (n = 20 and 40) clusters with CO, PEt3, F, NO2, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt3 with F, NO2, or CN converted the B20 cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt3, F, NO2, and CN ligands to B20 can significantly modulate the electronic properties of B20 to realize the formation of metal-free superalkali (B20(PEt3)n, n = 3-5) and superhalogen (B20F, B20NO2, and B20CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B20(PEt3)3+B20F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信