合理设计作为钠离子电池高性能负极材料的准一维多孔壳 MnSe@N 掺杂碳纳米棒

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-09-18 Epub Date: 2024-09-05 DOI:10.1021/acs.nanolett.4c01408
Lei Wang, Fei Huang, Xinmei Song, Jiayi Li, Guoyin Zhu, Zhong Jin, Zhihui Dai
{"title":"合理设计作为钠离子电池高性能负极材料的准一维多孔壳 MnSe@N 掺杂碳纳米棒","authors":"Lei Wang, Fei Huang, Xinmei Song, Jiayi Li, Guoyin Zhu, Zhong Jin, Zhihui Dai","doi":"10.1021/acs.nanolett.4c01408","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g<sup>-1</sup> at 5 A g<sup>-1</sup>) and long lifespan (132.7 mA h g<sup>-1</sup> after 2000 cycles at 5 A g<sup>-1</sup>), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic <i>in situ</i> microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries.\",\"authors\":\"Lei Wang, Fei Huang, Xinmei Song, Jiayi Li, Guoyin Zhu, Zhong Jin, Zhihui Dai\",\"doi\":\"10.1021/acs.nanolett.4c01408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g<sup>-1</sup> at 5 A g<sup>-1</sup>) and long lifespan (132.7 mA h g<sup>-1</sup> after 2000 cycles at 5 A g<sup>-1</sup>), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic <i>in situ</i> microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c01408\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01408","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(SIB)因其低成本和钠的低氧化还原电位而被认为是储能设备中最有前途的候选方案之一。然而,由于转换型负极材料的电导率低、晶格劣化和体积变化导致的动力学迟缓和容量快速衰减,阻碍了它们的应用。在此,我们报告了一种基于硒化锰(MnSe)纳米粒子封装掺杂 N 的碳(MnSe@NC)纳米棒的多核壳阳极材料的设计。得益于导电性多核壳结构,MnSe@NC 阳极显示出突出的速率能力(5 A g-1 时为 152.7 mA h g-1)和长寿命(5 A g-1 时循环 2000 次后为 132.7 mA h g-1),验证了高性能 SIB 合理阳极结构的本质。系统的原位显微和光谱方法揭示了 MnSe@NC 的高度可逆转换反应机制。我们的研究为开发先进的过渡金属硒化物阳极和理解高性能 SIB 的电化学反应机制提出了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries.

Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信