大气中碱酸比的上升可能与气溶胶酸度的增加有关。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-09-17 Epub Date: 2024-09-04 DOI:10.1021/acs.est.4c06860
Guangjie Zheng, Hang Su, Ruilin Wan, Xiaolin Duan, Yafang Cheng
{"title":"大气中碱酸比的上升可能与气溶胶酸度的增加有关。","authors":"Guangjie Zheng, Hang Su, Ruilin Wan, Xiaolin Duan, Yafang Cheng","doi":"10.1021/acs.est.4c06860","DOIUrl":null,"url":null,"abstract":"<p><p>Aerosol acidity (or pH) is one central parameter in determining the health, climate, and ecological effects of aerosols. While it is traditionally assumed that the long-term aerosol pH levels are determined by the relative abundances of atmospheric alkaline to acidic substances (referred to as <i>R</i><sub>C/A</sub> hereinafter), we observed contrasting pH─<i>R</i><sub>C/A</sub> trends at different sites globally, i.e., rising alkali-to-acid ratios in the atmosphere may unexpectedly lead to increased aerosol acidity. Here, we examined this apparently counterintuitive phenomenon using the multiphase buffer theory. We show that the aerosol water content (AWC) set a pH \"baseline\" as the peak buffer pH, while the <i>R</i><sub>C/A</sub> and particle-phase chemical compositions determine the deviation of pH from this baseline within the buffer ranges. Therefore, contrasting long-term pH trends may emerge when <i>R</i><sub>C/A</sub> increases while the AWC or nitrate fraction decreases, or vice versa. Our results provided a theoretical framework for a quantitative understanding of the response of aerosol pH to variations in SO<sub>2</sub>, NO<sub>x</sub> versus NH<sub>3</sub>, and dust emissions, offering broad applications in studies on aerosol pH and the associated environmental and health effects.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity.\",\"authors\":\"Guangjie Zheng, Hang Su, Ruilin Wan, Xiaolin Duan, Yafang Cheng\",\"doi\":\"10.1021/acs.est.4c06860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aerosol acidity (or pH) is one central parameter in determining the health, climate, and ecological effects of aerosols. While it is traditionally assumed that the long-term aerosol pH levels are determined by the relative abundances of atmospheric alkaline to acidic substances (referred to as <i>R</i><sub>C/A</sub> hereinafter), we observed contrasting pH─<i>R</i><sub>C/A</sub> trends at different sites globally, i.e., rising alkali-to-acid ratios in the atmosphere may unexpectedly lead to increased aerosol acidity. Here, we examined this apparently counterintuitive phenomenon using the multiphase buffer theory. We show that the aerosol water content (AWC) set a pH \\\"baseline\\\" as the peak buffer pH, while the <i>R</i><sub>C/A</sub> and particle-phase chemical compositions determine the deviation of pH from this baseline within the buffer ranges. Therefore, contrasting long-term pH trends may emerge when <i>R</i><sub>C/A</sub> increases while the AWC or nitrate fraction decreases, or vice versa. Our results provided a theoretical framework for a quantitative understanding of the response of aerosol pH to variations in SO<sub>2</sub>, NO<sub>x</sub> versus NH<sub>3</sub>, and dust emissions, offering broad applications in studies on aerosol pH and the associated environmental and health effects.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c06860\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06860","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶酸度(或 pH 值)是决定气溶胶对健康、气候和生态影响的一个核心参数。虽然传统上认为长期气溶胶 pH 值是由大气中碱性物质与酸性物质的相对丰度(以下简称为 RC/A)决定的,但我们在全球不同地点观察到的 pH─RC/A 趋势却截然不同,也就是说,大气中碱酸比的上升可能会意外地导致气溶胶酸度的增加。在这里,我们利用多相缓冲理论研究了这一明显违背直觉的现象。我们发现,气溶胶含水量(AWC)设定了一个 pH 值 "基线",作为缓冲 pH 值的峰值,而 RC/A 和颗粒相化学成分则决定了缓冲范围内 pH 值与这一基线的偏差。因此,当 RC/A 增加而 AWC 或硝酸盐组分减少时,或反之亦然,可能会出现截然不同的长期 pH 趋势。我们的研究结果为定量理解气溶胶 pH 值对二氧化硫、氮氧化物与 NH3 和粉尘排放变化的响应提供了一个理论框架,可广泛应用于气溶胶 pH 值及相关环境和健康影响的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity.

Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity.

Aerosol acidity (or pH) is one central parameter in determining the health, climate, and ecological effects of aerosols. While it is traditionally assumed that the long-term aerosol pH levels are determined by the relative abundances of atmospheric alkaline to acidic substances (referred to as RC/A hereinafter), we observed contrasting pH─RC/A trends at different sites globally, i.e., rising alkali-to-acid ratios in the atmosphere may unexpectedly lead to increased aerosol acidity. Here, we examined this apparently counterintuitive phenomenon using the multiphase buffer theory. We show that the aerosol water content (AWC) set a pH "baseline" as the peak buffer pH, while the RC/A and particle-phase chemical compositions determine the deviation of pH from this baseline within the buffer ranges. Therefore, contrasting long-term pH trends may emerge when RC/A increases while the AWC or nitrate fraction decreases, or vice versa. Our results provided a theoretical framework for a quantitative understanding of the response of aerosol pH to variations in SO2, NOx versus NH3, and dust emissions, offering broad applications in studies on aerosol pH and the associated environmental and health effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信