Jamie L Hernandez, Shin-Tian Chien, My-Anh Doan, Ian T Suydam, Kim A Woodrow
{"title":"抗逆转录病毒 (ARV) 的特性决定了多药皮下植入物的长效释放和组织分配行为。","authors":"Jamie L Hernandez, Shin-Tian Chien, My-Anh Doan, Ian T Suydam, Kim A Woodrow","doi":"10.1021/acsbiomaterials.4c01290","DOIUrl":null,"url":null,"abstract":"<p><p>Subcutaneous implants can provide patients with long-acting, compliance-independent drug dosing. For this reason, subcutaneous implants have shown emerging interest in human immunodeficiency virus (HIV) prevention. However, any successful long-acting HIV-prevention device will require multidrug dosing, which poses a challenge for formulation considering the physicochemically diverse selection of antiretroviral (ARV) candidates. As a method that has shown the capacity of efficient multidrug delivery, we assessed electrospun fiber implants composed of three synergistically potent ARVs and a biodegradable polymer selected by <i>in vitro</i> release studies. In mice, subcutaneous electrospun fiber implants exhibit burst release of the more hydrophilic drugs maraviroc (MVC) and raltegravir (RAL), which could be reduced <i>via</i> simple prewash treatments of the implants. Over an extended 120 day time frame, fiber implants show drug-specific differences in release time frames and magnitudes in blood serum. However, end-point drug tissue concentrations show that the most hydrophobic drug etravirine (ETR) remains in high concentrations within the implant and in local skin tissue biopsies. Furthermore, ETR is found to be capable of significant partitioning into lymph nodes, the lower female reproductive tract, and the rectum. Topologically smooth film implants also exhibit the same drug-dependent trends. Therefore, we illustrate that drug release and drug tissue partitioning are largely dictated by drug properties. Further, we find that the properties of ETR enable significant drug quantities within the tissues most relevant to HIV protection. Evidence from this work emphasizes the need for a greater focus on drug properties and prodrug strategies to enable relevant, extended, and targeted drug release.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiretroviral (ARV) Properties Dictate Long-Acting Release and Tissue Partitioning Behaviors in Multidrug Subcutaneous Implants.\",\"authors\":\"Jamie L Hernandez, Shin-Tian Chien, My-Anh Doan, Ian T Suydam, Kim A Woodrow\",\"doi\":\"10.1021/acsbiomaterials.4c01290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subcutaneous implants can provide patients with long-acting, compliance-independent drug dosing. For this reason, subcutaneous implants have shown emerging interest in human immunodeficiency virus (HIV) prevention. However, any successful long-acting HIV-prevention device will require multidrug dosing, which poses a challenge for formulation considering the physicochemically diverse selection of antiretroviral (ARV) candidates. As a method that has shown the capacity of efficient multidrug delivery, we assessed electrospun fiber implants composed of three synergistically potent ARVs and a biodegradable polymer selected by <i>in vitro</i> release studies. In mice, subcutaneous electrospun fiber implants exhibit burst release of the more hydrophilic drugs maraviroc (MVC) and raltegravir (RAL), which could be reduced <i>via</i> simple prewash treatments of the implants. Over an extended 120 day time frame, fiber implants show drug-specific differences in release time frames and magnitudes in blood serum. However, end-point drug tissue concentrations show that the most hydrophobic drug etravirine (ETR) remains in high concentrations within the implant and in local skin tissue biopsies. Furthermore, ETR is found to be capable of significant partitioning into lymph nodes, the lower female reproductive tract, and the rectum. Topologically smooth film implants also exhibit the same drug-dependent trends. Therefore, we illustrate that drug release and drug tissue partitioning are largely dictated by drug properties. Further, we find that the properties of ETR enable significant drug quantities within the tissues most relevant to HIV protection. Evidence from this work emphasizes the need for a greater focus on drug properties and prodrug strategies to enable relevant, extended, and targeted drug release.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01290\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01290","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Antiretroviral (ARV) Properties Dictate Long-Acting Release and Tissue Partitioning Behaviors in Multidrug Subcutaneous Implants.
Subcutaneous implants can provide patients with long-acting, compliance-independent drug dosing. For this reason, subcutaneous implants have shown emerging interest in human immunodeficiency virus (HIV) prevention. However, any successful long-acting HIV-prevention device will require multidrug dosing, which poses a challenge for formulation considering the physicochemically diverse selection of antiretroviral (ARV) candidates. As a method that has shown the capacity of efficient multidrug delivery, we assessed electrospun fiber implants composed of three synergistically potent ARVs and a biodegradable polymer selected by in vitro release studies. In mice, subcutaneous electrospun fiber implants exhibit burst release of the more hydrophilic drugs maraviroc (MVC) and raltegravir (RAL), which could be reduced via simple prewash treatments of the implants. Over an extended 120 day time frame, fiber implants show drug-specific differences in release time frames and magnitudes in blood serum. However, end-point drug tissue concentrations show that the most hydrophobic drug etravirine (ETR) remains in high concentrations within the implant and in local skin tissue biopsies. Furthermore, ETR is found to be capable of significant partitioning into lymph nodes, the lower female reproductive tract, and the rectum. Topologically smooth film implants also exhibit the same drug-dependent trends. Therefore, we illustrate that drug release and drug tissue partitioning are largely dictated by drug properties. Further, we find that the properties of ETR enable significant drug quantities within the tissues most relevant to HIV protection. Evidence from this work emphasizes the need for a greater focus on drug properties and prodrug strategies to enable relevant, extended, and targeted drug release.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture