Zhi‐Zeng Si, Zhen‐Tao Ju, Long‐Fei Ren, Xue‐Peng Wang, Boris A. Malomed, Chao‐Qing Dai
{"title":"由类噪声脉冲转换态组成的孤子分子的偏振诱导堆积和转换机制","authors":"Zhi‐Zeng Si, Zhen‐Tao Ju, Long‐Fei Ren, Xue‐Peng Wang, Boris A. Malomed, Chao‐Qing Dai","doi":"10.1002/lpor.202401019","DOIUrl":null,"url":null,"abstract":"Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States\",\"authors\":\"Zhi‐Zeng Si, Zhen‐Tao Ju, Long‐Fei Ren, Xue‐Peng Wang, Boris A. Malomed, Chao‐Qing Dai\",\"doi\":\"10.1002/lpor.202401019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401019\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401019","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States
Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.