恒星飞越时可能从太阳系外注入的不规则卫星

Susanne Pfalzner, Amith Govind and Frank W. Wagner
{"title":"恒星飞越时可能从太阳系外注入的不规则卫星","authors":"Susanne Pfalzner, Amith Govind and Frank W. Wagner","doi":"10.3847/2041-8213/ad63a6","DOIUrl":null,"url":null,"abstract":"The irregular moons orbit the giant planets on distant, inclined, and eccentric trajectories, in sharp contrast with the coplanar and quasicircular orbits of the regular moons. The origin of these irregular moons is still an open question, but these moons have a lot in common with the objects beyond Neptune (trans-Neptunian objects—TNOs), suggestive of a common origin. Here, we show that the close flyby of a star may be the connecting element. A stellar flyby can simultaneously reproduce the complex TNO dynamics quantitatively while explaining the origin of the irregular moons and the color distributions of both populations. This flyby would have catapulted 7.2% of the original TNO population into the region of the planets, many on retrograde orbits. Most injected TNOs would have been subsequently ejected from the solar system (85%). However, a considerable fraction would have had the potential to be captured by the planets. The exclusively distant origin of the injected TNOs may also explain the lack of very red irregular moons.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irregular Moons Possibly Injected from the Outer Solar System by a Stellar Flyby\",\"authors\":\"Susanne Pfalzner, Amith Govind and Frank W. Wagner\",\"doi\":\"10.3847/2041-8213/ad63a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The irregular moons orbit the giant planets on distant, inclined, and eccentric trajectories, in sharp contrast with the coplanar and quasicircular orbits of the regular moons. The origin of these irregular moons is still an open question, but these moons have a lot in common with the objects beyond Neptune (trans-Neptunian objects—TNOs), suggestive of a common origin. Here, we show that the close flyby of a star may be the connecting element. A stellar flyby can simultaneously reproduce the complex TNO dynamics quantitatively while explaining the origin of the irregular moons and the color distributions of both populations. This flyby would have catapulted 7.2% of the original TNO population into the region of the planets, many on retrograde orbits. Most injected TNOs would have been subsequently ejected from the solar system (85%). However, a considerable fraction would have had the potential to be captured by the planets. The exclusively distant origin of the injected TNOs may also explain the lack of very red irregular moons.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad63a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad63a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不规则卫星以遥远、倾斜和偏心的轨道绕巨行星运行,与规则卫星的共面和类圆形轨道形成鲜明对比。这些不规则卫星的起源仍是一个悬而未决的问题,但这些卫星与海王星以外的天体(跨海王星天体-TNOs)有很多共同之处,这表明它们有着共同的起源。在这里,我们展示了恒星的近距离飞越可能是连接的要素。恒星飞越可以同时定量地再现复杂的 TNO 动态,同时解释不规则卫星的起源和两个种群的颜色分布。这次飞越会将 7.2% 的原初 TNO 群体弹射到行星区域,其中许多处于逆行轨道上。大部分被注入的 TNO 随后会被弹出太阳系(85%)。不过,还有相当一部分有可能被行星捕获。被注入的TNOs的唯一遥远起源也可以解释为什么没有非常红的不规则卫星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irregular Moons Possibly Injected from the Outer Solar System by a Stellar Flyby
The irregular moons orbit the giant planets on distant, inclined, and eccentric trajectories, in sharp contrast with the coplanar and quasicircular orbits of the regular moons. The origin of these irregular moons is still an open question, but these moons have a lot in common with the objects beyond Neptune (trans-Neptunian objects—TNOs), suggestive of a common origin. Here, we show that the close flyby of a star may be the connecting element. A stellar flyby can simultaneously reproduce the complex TNO dynamics quantitatively while explaining the origin of the irregular moons and the color distributions of both populations. This flyby would have catapulted 7.2% of the original TNO population into the region of the planets, many on retrograde orbits. Most injected TNOs would have been subsequently ejected from the solar system (85%). However, a considerable fraction would have had the potential to be captured by the planets. The exclusively distant origin of the injected TNOs may also explain the lack of very red irregular moons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信