{"title":"活化 Ru 纳米团簇,在水性宽温锌-空气电池中实现强效氧还原","authors":"Rupeng Liu (刘如鹏) , Chunhuan Jiang (姜春环) , Jinhan Guo (郭金函) , Yue Zheng (郑月) , Leting Zhang (张乐婷) , Xiaolong Liang (梁晓龙) , Huimin Gao (高慧敏) , Jiancheng Zhao (赵建成) , Yunhang Fan (范云航) , Qing Chen (陈庆) , Wenhui He (何文辉) , Lehui Lu (逯乐慧)","doi":"10.1016/j.matt.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous wide-temperature zinc-air batteries (AWT-ZABs) have the potential to meet the fast-growing energy demand in extreme climates (−60°C to 60°C). However, cathodic oxygen reduction reaction (ORR) kinetics are susceptible to temperature fluctuations. Herein, we present a highly active and durable ORR catalyst composed of Ru nanoclusters and neighboring Mn-N<sub>4</sub> moieties (Ru<sub>NC</sub>@Mn-N<sub>4</sub>). The Ru<sub>NC</sub>@Mn-N<sub>4</sub> achieved a half-wave potential of 0.925 V, surpassing known Ru-based electrocatalysts, with minimal decay after 50,000 cycles. In AWT-ZABs, the Ru<sub>NC</sub>@Mn-N<sub>4</sub> delivered a peak power density (P<sub>max</sub>) of 320.6 mW cm<sup>−2</sup> at 60°C and a 1.5- to 3-fold higher P<sub>max</sub> at −20°C to −60°C compared to Pt/C. Our mechanistic investigations unveil the electron-deficient nature of Ru nanoclusters activated by the Mn-N<sub>4</sub> moieties, which enables the optimized adsorption/dissociation of O<sub>2</sub> and facilitates low-temperature protonation of intermediates, resulting in speedy wide-temperature ORR kinetics. This study sets the stage for the deliberate design of ORR electrocatalysts for optimal AWT-ZAB performance.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4031-4045"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Ru nanoclusters for robust oxygen reduction in aqueous wide-temperature zinc-air batteries\",\"authors\":\"Rupeng Liu (刘如鹏) , Chunhuan Jiang (姜春环) , Jinhan Guo (郭金函) , Yue Zheng (郑月) , Leting Zhang (张乐婷) , Xiaolong Liang (梁晓龙) , Huimin Gao (高慧敏) , Jiancheng Zhao (赵建成) , Yunhang Fan (范云航) , Qing Chen (陈庆) , Wenhui He (何文辉) , Lehui Lu (逯乐慧)\",\"doi\":\"10.1016/j.matt.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous wide-temperature zinc-air batteries (AWT-ZABs) have the potential to meet the fast-growing energy demand in extreme climates (−60°C to 60°C). However, cathodic oxygen reduction reaction (ORR) kinetics are susceptible to temperature fluctuations. Herein, we present a highly active and durable ORR catalyst composed of Ru nanoclusters and neighboring Mn-N<sub>4</sub> moieties (Ru<sub>NC</sub>@Mn-N<sub>4</sub>). The Ru<sub>NC</sub>@Mn-N<sub>4</sub> achieved a half-wave potential of 0.925 V, surpassing known Ru-based electrocatalysts, with minimal decay after 50,000 cycles. In AWT-ZABs, the Ru<sub>NC</sub>@Mn-N<sub>4</sub> delivered a peak power density (P<sub>max</sub>) of 320.6 mW cm<sup>−2</sup> at 60°C and a 1.5- to 3-fold higher P<sub>max</sub> at −20°C to −60°C compared to Pt/C. Our mechanistic investigations unveil the electron-deficient nature of Ru nanoclusters activated by the Mn-N<sub>4</sub> moieties, which enables the optimized adsorption/dissociation of O<sub>2</sub> and facilitates low-temperature protonation of intermediates, resulting in speedy wide-temperature ORR kinetics. This study sets the stage for the deliberate design of ORR electrocatalysts for optimal AWT-ZAB performance.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 11\",\"pages\":\"Pages 4031-4045\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524004375\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Activating Ru nanoclusters for robust oxygen reduction in aqueous wide-temperature zinc-air batteries
Aqueous wide-temperature zinc-air batteries (AWT-ZABs) have the potential to meet the fast-growing energy demand in extreme climates (−60°C to 60°C). However, cathodic oxygen reduction reaction (ORR) kinetics are susceptible to temperature fluctuations. Herein, we present a highly active and durable ORR catalyst composed of Ru nanoclusters and neighboring Mn-N4 moieties (RuNC@Mn-N4). The RuNC@Mn-N4 achieved a half-wave potential of 0.925 V, surpassing known Ru-based electrocatalysts, with minimal decay after 50,000 cycles. In AWT-ZABs, the RuNC@Mn-N4 delivered a peak power density (Pmax) of 320.6 mW cm−2 at 60°C and a 1.5- to 3-fold higher Pmax at −20°C to −60°C compared to Pt/C. Our mechanistic investigations unveil the electron-deficient nature of Ru nanoclusters activated by the Mn-N4 moieties, which enables the optimized adsorption/dissociation of O2 and facilitates low-temperature protonation of intermediates, resulting in speedy wide-temperature ORR kinetics. This study sets the stage for the deliberate design of ORR electrocatalysts for optimal AWT-ZAB performance.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.