中红外单光子压缩光谱学

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Ben Sun, Kun Huang, Huijie Ma, Jianan Fang, Tingting Zheng, Ruiyang Qin, Yongyuan Chu, Hairun Guo, Yan Liang, Heping Zeng
{"title":"中红外单光子压缩光谱学","authors":"Ben Sun, Kun Huang, Huijie Ma, Jianan Fang, Tingting Zheng, Ruiyang Qin, Yongyuan Chu, Hairun Guo, Yan Liang, Heping Zeng","doi":"10.1002/lpor.202401099","DOIUrl":null,"url":null,"abstract":"Sensitive mid-infrared (MIR) spectroscopy plays an indispensable role in various photon-starved conditions. However, the detection sensitivity of conventional MIR spectrometers is severely limited by excessive noises of the involved infrared sensors, especially for multi-pixel arrays in parallel spectral acquisition. Here, an ultra-sensitive MIR single-pixel spectrometer is devised and implemented, which relies on high-fidelity spectral upconversion and wavelength-encoding compressive measurement. Specifically, a MIR nanophotonic supercontinuum from 3.1 to 3.9 µm is nonlinearly converted to the NIR band via synchronous chirped-pulse pumping, which facilitates both the precise spectral mapping and sensitive upconversion detection. The upconverted signal is then spatially dispersed onto a programmable digital micromirror device, before being registered by a single-element silicon detector. Consequently, the spectral information can be deciphered from the correlation between encoded patterns and recorded measurements, which results in a spectral resolution of 0.5 <span data-altimg=\"/cms/asset/863e4674-84af-43c9-9e3f-5d0ea6a1f068/lpor202401099-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202401099-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,3\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"c m Superscript negative 1\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202401099:lpor202401099-math-0001\" display=\"inline\" location=\"graphic/lpor202401099-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,3\" data-semantic-role=\"unknown\" data-semantic-speech=\"c m Superscript negative 1\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">cm</mi><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></msup>${\\rm cm}^{-1}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> under an illumination flux down to 0.01 photons nm<sup>–1</sup> pulse<sup>–1</sup>. Moreover, faithful reconstructions at sub-Nyquist sampling rates are demonstrated using the compressive sensing algorithm, which leads to a 95% reduction in data acquisition time. The presented single-pixel computational spectrometer features wavelength multiplexing, high throughput, and efficient sampling, which thus paves a new way for sensitive and fast spectroscopic analysis at the single-photon level.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid-Infrared Single-Photon Compressive Spectroscopy\",\"authors\":\"Ben Sun, Kun Huang, Huijie Ma, Jianan Fang, Tingting Zheng, Ruiyang Qin, Yongyuan Chu, Hairun Guo, Yan Liang, Heping Zeng\",\"doi\":\"10.1002/lpor.202401099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitive mid-infrared (MIR) spectroscopy plays an indispensable role in various photon-starved conditions. However, the detection sensitivity of conventional MIR spectrometers is severely limited by excessive noises of the involved infrared sensors, especially for multi-pixel arrays in parallel spectral acquisition. Here, an ultra-sensitive MIR single-pixel spectrometer is devised and implemented, which relies on high-fidelity spectral upconversion and wavelength-encoding compressive measurement. Specifically, a MIR nanophotonic supercontinuum from 3.1 to 3.9 µm is nonlinearly converted to the NIR band via synchronous chirped-pulse pumping, which facilitates both the precise spectral mapping and sensitive upconversion detection. The upconverted signal is then spatially dispersed onto a programmable digital micromirror device, before being registered by a single-element silicon detector. Consequently, the spectral information can be deciphered from the correlation between encoded patterns and recorded measurements, which results in a spectral resolution of 0.5 <span data-altimg=\\\"/cms/asset/863e4674-84af-43c9-9e3f-5d0ea6a1f068/lpor202401099-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/lpor202401099-math-0001.png\\\"><mjx-semantics><mjx-msup data-semantic-children=\\\"0,3\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"c m Superscript negative 1\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:18638880:media:lpor202401099:lpor202401099-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/lpor202401099-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"c m Superscript negative 1\\\" data-semantic-type=\\\"superscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">cm</mi><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow></msup>${\\\\rm cm}^{-1}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> under an illumination flux down to 0.01 photons nm<sup>–1</sup> pulse<sup>–1</sup>. Moreover, faithful reconstructions at sub-Nyquist sampling rates are demonstrated using the compressive sensing algorithm, which leads to a 95% reduction in data acquisition time. The presented single-pixel computational spectrometer features wavelength multiplexing, high throughput, and efficient sampling, which thus paves a new way for sensitive and fast spectroscopic analysis at the single-photon level.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401099\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401099","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

灵敏的中红外(MIR)光谱在各种光子匮乏的条件下发挥着不可或缺的作用。然而,传统中红外光谱仪的探测灵敏度受到相关红外传感器噪声过大的严重限制,特别是在多像素阵列并行光谱采集时。在此,我们设计并实现了一种超灵敏中红外单像素光谱仪,它依赖于高保真光谱上转换和波长编码压缩测量。具体来说,通过同步啁啾脉冲泵浦将 3.1 至 3.9 µm 的中红外纳米光子超连续非线性地转换到近红外波段,这有助于精确的光谱映射和灵敏的上转换检测。然后,上变频信号被空间分散到一个可编程数字微镜装置上,再由一个单元素硅探测器进行记录。因此,光谱信息可以从编码模式和记录测量值之间的相关性中破译出来,从而使光谱分辨率达到 0.5 cm-1${\rm cm}^{-1}$ ,光通量低至 0.01 光子 nm-1 脉冲-1。此外,利用压缩传感算法,在亚奈奎斯特采样率下实现了忠实重构,从而将数据采集时间缩短了 95%。所介绍的单像素计算光谱仪具有波长复用、高吞吐量和高效采样等特点,从而为在单光子水平上进行灵敏而快速的光谱分析铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mid-Infrared Single-Photon Compressive Spectroscopy

Mid-Infrared Single-Photon Compressive Spectroscopy
Sensitive mid-infrared (MIR) spectroscopy plays an indispensable role in various photon-starved conditions. However, the detection sensitivity of conventional MIR spectrometers is severely limited by excessive noises of the involved infrared sensors, especially for multi-pixel arrays in parallel spectral acquisition. Here, an ultra-sensitive MIR single-pixel spectrometer is devised and implemented, which relies on high-fidelity spectral upconversion and wavelength-encoding compressive measurement. Specifically, a MIR nanophotonic supercontinuum from 3.1 to 3.9 µm is nonlinearly converted to the NIR band via synchronous chirped-pulse pumping, which facilitates both the precise spectral mapping and sensitive upconversion detection. The upconverted signal is then spatially dispersed onto a programmable digital micromirror device, before being registered by a single-element silicon detector. Consequently, the spectral information can be deciphered from the correlation between encoded patterns and recorded measurements, which results in a spectral resolution of 0.5 cm1${\rm cm}^{-1}$ under an illumination flux down to 0.01 photons nm–1 pulse–1. Moreover, faithful reconstructions at sub-Nyquist sampling rates are demonstrated using the compressive sensing algorithm, which leads to a 95% reduction in data acquisition time. The presented single-pixel computational spectrometer features wavelength multiplexing, high throughput, and efficient sampling, which thus paves a new way for sensitive and fast spectroscopic analysis at the single-photon level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信