{"title":"利用节点动力学预测技术融合的框架","authors":"Guancan Yang , Jiaxin Xing , Shuo Xu , Yuntian Zhao","doi":"10.1016/j.joi.2024.101583","DOIUrl":null,"url":null,"abstract":"<div><p>In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 4","pages":"Article 101583"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework armed with node dynamics for predicting technology convergence\",\"authors\":\"Guancan Yang , Jiaxin Xing , Shuo Xu , Yuntian Zhao\",\"doi\":\"10.1016/j.joi.2024.101583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.</p></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":\"18 4\",\"pages\":\"Article 101583\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724000956\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000956","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A framework armed with node dynamics for predicting technology convergence
In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.