Kshipra S. Kapoor , Kristen Harris , Kent A. Arian , Lihua Ma , Beatriz Schueng Zancanela , Kaira A. Church , Kathleen M. McAndrews , Raghu Kalluri
{"title":"利用尺寸排阻液相色谱法高通量、快速分离纯度较高的细胞外囊泡和外泌体","authors":"Kshipra S. Kapoor , Kristen Harris , Kent A. Arian , Lihua Ma , Beatriz Schueng Zancanela , Kaira A. Church , Kathleen M. McAndrews , Raghu Kalluri","doi":"10.1016/j.bioactmat.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion – fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.</p></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":null,"pages":null},"PeriodicalIF":18.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24003219/pdfft?md5=f0c2e6b68f9caae3a20e48d22bc9a2a1&pid=1-s2.0-S2452199X24003219-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography\",\"authors\":\"Kshipra S. Kapoor , Kristen Harris , Kent A. Arian , Lihua Ma , Beatriz Schueng Zancanela , Kaira A. Church , Kathleen M. McAndrews , Raghu Kalluri\",\"doi\":\"10.1016/j.bioactmat.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion – fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.</p></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24003219/pdfft?md5=f0c2e6b68f9caae3a20e48d22bc9a2a1&pid=1-s2.0-S2452199X24003219-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24003219\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24003219","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
细胞外囊泡(EVs)已成为无需侵入性程序即可诊断一系列疾病的潜在生物标记物。与合成囊泡相比,细胞外囊泡在递送各种药物方面也具有优势;然而,在将EV与其他颗粒和可溶性蛋白质分离方面存在的局限性导致EV的回收率不稳定,纯度较低。在这里,我们报告了一种新的高产(88.47%)、快速(20 分钟)EV 分离方法,即尺寸排除-快速蛋白质液相色谱法(SE-FPLC)。我们的研究表明,SE-FPLC 能有效分离多种来源的 EVs,包括来自人和小鼠细胞及血清样本的 EVs。结果表明,SE-FPLC 能成功去除白蛋白和脂蛋白复合物等高含量蛋白质杂质,而这些杂质是大规模分离 EVs 的主要障碍。SE-FPLC 的高产特性使 EV 生产的工业规模易于扩大,可用于各种临床用途。SE-FPLC 还能分析小量血液,用于临床护理点诊断。总之,与目前的 EV 分离方法相比,SE-FPLC 具有许多优势,并能快速应用于临床。
High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography
Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion – fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.