Keerthi Kumari Haralakal , Ashwini M. , Geeta D. Goudar , Venugopal C. K , Sharanappa Achappa , Bipin S. Chikkatti , Nagaraj R. Banapurmath , Ashok M. Sajjan
{"title":"探索纳米细菌纤维素-聚乙烯醇复合包装材料的性质","authors":"Keerthi Kumari Haralakal , Ashwini M. , Geeta D. Goudar , Venugopal C. K , Sharanappa Achappa , Bipin S. Chikkatti , Nagaraj R. Banapurmath , Ashok M. Sajjan","doi":"10.1016/j.nxnano.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><p>Nano bacterial cellulose (NBC) being a biopolymer has unique physical and chemical properties with high biocompatibility. It is pure cellulose with nanometer size, produced by certain group of bacteria. Its properties can be further improved by combining with poly(vinyl alcohol) (PVA), which is a fascinating polymer soluble in water and biocompatible. Composite films of PVA and NBC were prepared by solution casting method. Composite films of PVA-NBC (0,1,2,3,4,5 %) were tested for major packaging properties like water vapor transmission rate, swelling measurement, film solubility and moisture retention capacity. Among all concentration films, film with 5 % NBC- PVA showed better results for all the tests. Films were also checked for antimicrobial properties against spoilage-causing bacteria and fungi. Further, the films were applied to study the shelf life in the Mitli Banana (<em>Musa</em> sp<em>.</em>) followed by Organoleptic evaluation during storage. Results showed that the banana packed with 5 % NBC- PVA film has retained maximum acceptable characters than other packages.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000603/pdfft?md5=821991d73daaadd5153543b4f0309e3f&pid=1-s2.0-S2949829524000603-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the nature of nano bacterial cellulose-poly(vinyl alcohol) as a composite packaging material\",\"authors\":\"Keerthi Kumari Haralakal , Ashwini M. , Geeta D. Goudar , Venugopal C. K , Sharanappa Achappa , Bipin S. Chikkatti , Nagaraj R. Banapurmath , Ashok M. Sajjan\",\"doi\":\"10.1016/j.nxnano.2024.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nano bacterial cellulose (NBC) being a biopolymer has unique physical and chemical properties with high biocompatibility. It is pure cellulose with nanometer size, produced by certain group of bacteria. Its properties can be further improved by combining with poly(vinyl alcohol) (PVA), which is a fascinating polymer soluble in water and biocompatible. Composite films of PVA and NBC were prepared by solution casting method. Composite films of PVA-NBC (0,1,2,3,4,5 %) were tested for major packaging properties like water vapor transmission rate, swelling measurement, film solubility and moisture retention capacity. Among all concentration films, film with 5 % NBC- PVA showed better results for all the tests. Films were also checked for antimicrobial properties against spoilage-causing bacteria and fungi. Further, the films were applied to study the shelf life in the Mitli Banana (<em>Musa</em> sp<em>.</em>) followed by Organoleptic evaluation during storage. Results showed that the banana packed with 5 % NBC- PVA film has retained maximum acceptable characters than other packages.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000603/pdfft?md5=821991d73daaadd5153543b4f0309e3f&pid=1-s2.0-S2949829524000603-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the nature of nano bacterial cellulose-poly(vinyl alcohol) as a composite packaging material
Nano bacterial cellulose (NBC) being a biopolymer has unique physical and chemical properties with high biocompatibility. It is pure cellulose with nanometer size, produced by certain group of bacteria. Its properties can be further improved by combining with poly(vinyl alcohol) (PVA), which is a fascinating polymer soluble in water and biocompatible. Composite films of PVA and NBC were prepared by solution casting method. Composite films of PVA-NBC (0,1,2,3,4,5 %) were tested for major packaging properties like water vapor transmission rate, swelling measurement, film solubility and moisture retention capacity. Among all concentration films, film with 5 % NBC- PVA showed better results for all the tests. Films were also checked for antimicrobial properties against spoilage-causing bacteria and fungi. Further, the films were applied to study the shelf life in the Mitli Banana (Musa sp.) followed by Organoleptic evaluation during storage. Results showed that the banana packed with 5 % NBC- PVA film has retained maximum acceptable characters than other packages.