Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park
{"title":"方形着色松弛的布鲁克斯型定理","authors":"Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park","doi":"10.1016/j.disc.2024.114233","DOIUrl":null,"url":null,"abstract":"<div><p>The following relaxation of proper coloring the square of a graph was recently introduced: for a positive integer <em>h</em>, the <em>proper h-conflict-free chromatic number</em> of a graph <em>G</em>, denoted <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring where every vertex <em>v</em> has <span><math><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>}</mo></math></span> colors appearing exactly once on its neighborhood. Caro, Petruševski, and Škrekovski put forth a Brooks-type conjecture: if <em>G</em> is a graph with <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The best known result regarding the conjecture is <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which is implied by a result of Pach and Tardos. We improve upon the aforementioned result for all <em>h</em>, and also enlarge the class of graphs for which the conjecture is known to be true.</p><p>Our main result is the following: for a graph <em>G</em>, if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>h</mi><mo>+</mo><mn>2</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>; this is tight up to the additive term as we explicitly construct infinitely many graphs <em>G</em> with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that the conjecture is true for chordal graphs, and obtain partial results for quasi-line graphs and claw-free graphs. Our main result also improves upon a Brooks-type result for <em>h</em>-dynamic coloring.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003649/pdfft?md5=d91aefd107404a4f8392a7adc9d9507d&pid=1-s2.0-S0012365X24003649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Brooks-type theorems for relaxations of square colorings\",\"authors\":\"Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park\",\"doi\":\"10.1016/j.disc.2024.114233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The following relaxation of proper coloring the square of a graph was recently introduced: for a positive integer <em>h</em>, the <em>proper h-conflict-free chromatic number</em> of a graph <em>G</em>, denoted <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring where every vertex <em>v</em> has <span><math><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>}</mo></math></span> colors appearing exactly once on its neighborhood. Caro, Petruševski, and Škrekovski put forth a Brooks-type conjecture: if <em>G</em> is a graph with <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The best known result regarding the conjecture is <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which is implied by a result of Pach and Tardos. We improve upon the aforementioned result for all <em>h</em>, and also enlarge the class of graphs for which the conjecture is known to be true.</p><p>Our main result is the following: for a graph <em>G</em>, if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>h</mi><mo>+</mo><mn>2</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>; this is tight up to the additive term as we explicitly construct infinitely many graphs <em>G</em> with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that the conjecture is true for chordal graphs, and obtain partial results for quasi-line graphs and claw-free graphs. Our main result also improves upon a Brooks-type result for <em>h</em>-dynamic coloring.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003649/pdfft?md5=d91aefd107404a4f8392a7adc9d9507d&pid=1-s2.0-S0012365X24003649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,有人提出了对图的正方形进行适当着色的以下放宽方法:对于正整数 h,图 G 的适当 h-无冲突色度数(表示为 χpcfh(G))是使 G 具有适当 k 着色的最小 k,在该适当 k 着色中,每个顶点 v 都有 min{degG(v),h} 颜色在其邻域上恰好出现一次。卡罗、佩特鲁舍夫斯基和什克里科夫斯基提出了一个布鲁克斯式猜想:如果 G 是一个Δ(G)≥3 的图,那么 χpcf1(G)≤Δ(G)+1。关于这个猜想的最著名结果是 χpcf1(G)≤2Δ(G)+1,这是由帕赫和塔尔多斯的一个结果暗示的。我们针对所有 h 改进了上述结果,并扩大了已知猜想为真的图类。我们的主要结果如下:对于一个图 G,如果 Δ(G)≥h+2,那么 χpcfh(G)≤(h+1)Δ(G)-1;由于我们明确地构造了具有 χpcfh(G)=(h+1)(Δ(G)-1)的无穷多个图 G,因此这在加法项之前是紧密的。我们还证明了猜想对于弦图是真的,并获得了准线图和无爪图的部分结果。我们的主要结果还改进了布鲁克斯式的 h 动态着色结果。
Brooks-type theorems for relaxations of square colorings
The following relaxation of proper coloring the square of a graph was recently introduced: for a positive integer h, the proper h-conflict-free chromatic number of a graph G, denoted , is the minimum k such that G has a proper k-coloring where every vertex v has colors appearing exactly once on its neighborhood. Caro, Petruševski, and Škrekovski put forth a Brooks-type conjecture: if G is a graph with , then . The best known result regarding the conjecture is , which is implied by a result of Pach and Tardos. We improve upon the aforementioned result for all h, and also enlarge the class of graphs for which the conjecture is known to be true.
Our main result is the following: for a graph G, if , then ; this is tight up to the additive term as we explicitly construct infinitely many graphs G with . We also show that the conjecture is true for chordal graphs, and obtain partial results for quasi-line graphs and claw-free graphs. Our main result also improves upon a Brooks-type result for h-dynamic coloring.