带禁忌扫帚的图形中的度数幂和星数

IF 0.7 3区 数学 Q2 MATHEMATICS
Dániel Gerbner
{"title":"带禁忌扫帚的图形中的度数幂和星数","authors":"Dániel Gerbner","doi":"10.1016/j.disc.2024.114232","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <em>G</em> with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a positive integer <em>r</em>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. We denote by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest value of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among <em>n</em>-vertex <em>F</em>-free graphs <em>G</em>, and by <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest number of stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <em>n</em>-vertex <em>F</em>-free graphs. The <em>broom</em> <span><math><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> is the graph obtained from an <em>ℓ</em>-vertex path by adding <em>s</em> new leaves connected to a penultimate vertex <em>v</em> of the path.</p><p>We determine <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>, proving a conjecture of Lan, Liu, Qin and Shi. We also determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114232"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003637/pdfft?md5=f6743e7fcba7f41401daef264d1fc9cb&pid=1-s2.0-S0012365X24003637-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Degree powers and number of stars in graphs with a forbidden broom\",\"authors\":\"Dániel Gerbner\",\"doi\":\"10.1016/j.disc.2024.114232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <em>G</em> with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a positive integer <em>r</em>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. We denote by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest value of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among <em>n</em>-vertex <em>F</em>-free graphs <em>G</em>, and by <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest number of stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <em>n</em>-vertex <em>F</em>-free graphs. The <em>broom</em> <span><math><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> is the graph obtained from an <em>ℓ</em>-vertex path by adding <em>s</em> new leaves connected to a penultimate vertex <em>v</em> of the path.</p><p>We determine <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>, proving a conjecture of Lan, Liu, Qin and Shi. We also determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114232\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003637/pdfft?md5=f6743e7fcba7f41401daef264d1fc9cb&pid=1-s2.0-S0012365X24003637-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003637\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003637","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个阶数为 d1,...,dn 的图 G 和一个正整数 r,设 er(G)=∑i=1ndir。我们用 exr(n,F) 表示无 n 个顶点的 F 图 G 中 er(G) 的最大值,用 ex(n,Sr,F) 表示无 n 个顶点的 F 图中星星 Sr 的最大数目。对于 r≥2、任意 ℓ,s 和足够大的 n,我们确定了 exr(n,B(ℓ,s)),证明了 Lan、Liu、Qin 和 Shi 的猜想。对于 r≥2、任意 ℓ,s 和足够大的 n,我们还确定了 ex(n,Sr,B(ℓ,s))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree powers and number of stars in graphs with a forbidden broom

Given a graph G with degree sequence d1,,dn and a positive integer r, let er(G)=i=1ndir. We denote by exr(n,F) the largest value of er(G) among n-vertex F-free graphs G, and by ex(n,Sr,F) the largest number of stars Sr in n-vertex F-free graphs. The broom B(,s) is the graph obtained from an -vertex path by adding s new leaves connected to a penultimate vertex v of the path.

We determine exr(n,B(,s)) for r2, any ,s and sufficiently large n, proving a conjecture of Lan, Liu, Qin and Shi. We also determine ex(n,Sr,B(,s)) for r2, any ,s and sufficiently large n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信