{"title":"非线性脉冲随机系统的有限时间稳定性及其在神经网络中的应用","authors":"Jingying Liu, Quanxin Zhu","doi":"10.1016/j.cnsns.2024.108298","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we employ the Lyapunov theory to generalize the finite time stability (FTS) results from general deterministic impulsive systems to impulsive stochastic time-varying systems, which overcomes inherent challenges. Sufficient conditions for the FTS of the system under stabilizing and destabilizing impulses are established by using the method of average dwell interval (ADT). For FTS of stabilizing impulses, we relax the constraint on the differential operator by allowing it to be indefinite rather than strictly negative or semi-negative definite. Furthermore, the theoretical results are applied to impulsive stochastic neural networks. Finally, two numerical examples are given to validate the reliability and practicability of the obtained results.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite time stability of nonlinear impulsive stochastic system and its application to neural networks\",\"authors\":\"Jingying Liu, Quanxin Zhu\",\"doi\":\"10.1016/j.cnsns.2024.108298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we employ the Lyapunov theory to generalize the finite time stability (FTS) results from general deterministic impulsive systems to impulsive stochastic time-varying systems, which overcomes inherent challenges. Sufficient conditions for the FTS of the system under stabilizing and destabilizing impulses are established by using the method of average dwell interval (ADT). For FTS of stabilizing impulses, we relax the constraint on the differential operator by allowing it to be indefinite rather than strictly negative or semi-negative definite. Furthermore, the theoretical results are applied to impulsive stochastic neural networks. Finally, two numerical examples are given to validate the reliability and practicability of the obtained results.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004830\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004830","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Finite time stability of nonlinear impulsive stochastic system and its application to neural networks
In this paper, we employ the Lyapunov theory to generalize the finite time stability (FTS) results from general deterministic impulsive systems to impulsive stochastic time-varying systems, which overcomes inherent challenges. Sufficient conditions for the FTS of the system under stabilizing and destabilizing impulses are established by using the method of average dwell interval (ADT). For FTS of stabilizing impulses, we relax the constraint on the differential operator by allowing it to be indefinite rather than strictly negative or semi-negative definite. Furthermore, the theoretical results are applied to impulsive stochastic neural networks. Finally, two numerical examples are given to validate the reliability and practicability of the obtained results.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.