量子仿射顶点代数的扭曲张量积和共积

IF 0.8 2区 数学 Q2 MATHEMATICS
Fei Kong
{"title":"量子仿射顶点代数的扭曲张量积和共积","authors":"Fei Kong","doi":"10.1016/j.jalgebra.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>g</mi></math></span> be a symmetrizable Kac-Moody Lie algebra, and let <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span> be the quantum affine vertex algebras constructed in <span><span>[11]</span></span>. For any complex numbers <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, we present an <em>ħ</em>-adic quantum vertex algebra homomorphism Δ from <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. In addition, if both <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are positive integers, we show that Δ induces an <em>ħ</em>-adic quantum vertex algebra homomorphism from <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. Moreover, we prove the coassociativity of Δ.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted tensor products of quantum affine vertex algebras and coproducts\",\"authors\":\"Fei Kong\",\"doi\":\"10.1016/j.jalgebra.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>g</mi></math></span> be a symmetrizable Kac-Moody Lie algebra, and let <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span> be the quantum affine vertex algebras constructed in <span><span>[11]</span></span>. For any complex numbers <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, we present an <em>ħ</em>-adic quantum vertex algebra homomorphism Δ from <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. In addition, if both <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are positive integers, we show that Δ induces an <em>ħ</em>-adic quantum vertex algebra homomorphism from <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. Moreover, we prove the coassociativity of Δ.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004733\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 g 是一个可对称的 Kac-Moody Lie 代数,让 Vgˆ,ħℓ、Lgˆ,ħℓ 是 [11] 中构建的量子仿射顶点代数。对于任何复数ℓ 和 ℓ′,我们提出了从 Vgˆ,ħħ+ℓ′到扭曲张量乘的量子顶点代数 Vgˆ,ħℓ_Sm_2297ˆVgˆ,ℓ′的量子顶点代数同构Δ。此外,如果 ℓ 和 ℓ′ 都是正整数,我们证明 Δ 会从 Lgˆ 引发一个 ħ-adic 量子顶点代数同态、+ℓ′到扭曲张量积的量子顶点代数 Lgˆ,ħ⊗ˆLgˆ,ħℓ′的同构。此外,我们还证明了 Δ 的共协性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted tensor products of quantum affine vertex algebras and coproducts

Let g be a symmetrizable Kac-Moody Lie algebra, and let Vgˆ,ħ, Lgˆ,ħ be the quantum affine vertex algebras constructed in [11]. For any complex numbers and , we present an ħ-adic quantum vertex algebra homomorphism Δ from Vgˆ,ħ+ to the twisted tensor product ħ-adic quantum vertex algebra Vgˆ,ħˆVgˆ,ħ. In addition, if both and are positive integers, we show that Δ induces an ħ-adic quantum vertex algebra homomorphism from Lgˆ,ħ+ to the twisted tensor product ħ-adic quantum vertex algebra Lgˆ,ħˆLgˆ,ħ. Moreover, we prove the coassociativity of Δ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信