Mario Seixas , Daniel Cardoso , Luís Eustáquio Moreira , Sidnei Paciornik
{"title":"弹性特性和节点对竹秆抗弯行为的影响","authors":"Mario Seixas , Daniel Cardoso , Luís Eustáquio Moreira , Sidnei Paciornik","doi":"10.1016/j.bamboo.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of elastic properties and nodes on the flexural behaviour of bamboo culms by comparing different characterization techniques and theoretical approaches. The most representative parts of the bamboo culm were selected using microscopic images of bamboo cross-sections. These were sliced from the bottom, middle, and top parts of a single culm and were analyzed with Digital Image Processing. Four-point bending tests were conducted on twelve culms of <em>Phyllostachys aurea</em>, subdivided into groups of untreated (UN) and heat-treated (HT) samples. The axial modulus of elasticity (E<sub>b</sub>) and the shear modulus (G) were determined experimentally using four different mathematical models: (i) a global deflection model using the Euler-Bernoulli beam theory according to the ISO Standard; (ii) a global deflection model using the Timoshenko beam theory; (iii) a global deflection model based on the Timoshenko beam theory but accounting for the presence of nodes; and finally, (iv) a local model using extensometry. The dominant failure modes for UN and HT samples are described and discussed, and were influenced by the moisture content (MC). Approaches (i) and (ii) showed good agreement, giving reliable parameters to assess E<sub>b</sub>. The third approach (iii) indicated that the nodes significantly influence the flexural behaviour of the culms. Approach (iv) was appropriate for determining G, but resulted in higher values of E<sub>b</sub>, typically not representative of the material.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773139124000454/pdfft?md5=fa55d9f5240124ade439d16746dd4128&pid=1-s2.0-S2773139124000454-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of elastic properties and nodes on the flexural behaviour of bamboo culms\",\"authors\":\"Mario Seixas , Daniel Cardoso , Luís Eustáquio Moreira , Sidnei Paciornik\",\"doi\":\"10.1016/j.bamboo.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the influence of elastic properties and nodes on the flexural behaviour of bamboo culms by comparing different characterization techniques and theoretical approaches. The most representative parts of the bamboo culm were selected using microscopic images of bamboo cross-sections. These were sliced from the bottom, middle, and top parts of a single culm and were analyzed with Digital Image Processing. Four-point bending tests were conducted on twelve culms of <em>Phyllostachys aurea</em>, subdivided into groups of untreated (UN) and heat-treated (HT) samples. The axial modulus of elasticity (E<sub>b</sub>) and the shear modulus (G) were determined experimentally using four different mathematical models: (i) a global deflection model using the Euler-Bernoulli beam theory according to the ISO Standard; (ii) a global deflection model using the Timoshenko beam theory; (iii) a global deflection model based on the Timoshenko beam theory but accounting for the presence of nodes; and finally, (iv) a local model using extensometry. The dominant failure modes for UN and HT samples are described and discussed, and were influenced by the moisture content (MC). Approaches (i) and (ii) showed good agreement, giving reliable parameters to assess E<sub>b</sub>. The third approach (iii) indicated that the nodes significantly influence the flexural behaviour of the culms. Approach (iv) was appropriate for determining G, but resulted in higher values of E<sub>b</sub>, typically not representative of the material.</p></div>\",\"PeriodicalId\":100040,\"journal\":{\"name\":\"Advances in Bamboo Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773139124000454/pdfft?md5=fa55d9f5240124ade439d16746dd4128&pid=1-s2.0-S2773139124000454-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bamboo Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773139124000454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139124000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过比较不同的表征技术和理论方法,研究了弹性特性和节点对竹秆抗弯行为的影响。研究人员利用竹子横截面的显微图像,选取了竹秆最具代表性的部分。这些图像分别来自单根竹秆的底部、中部和顶部,并采用数字图像处理技术进行分析。对 12 根竹秆进行了四点弯曲试验,并将其分为未处理(UN)和热处理(HT)两组。轴向弹性模量(Eb)和剪切模量(G)是使用四种不同的数学模型通过实验测定的:(i) 根据 ISO 标准使用欧拉-伯努利梁理论的全局挠度模型;(ii) 使用季莫申科梁理论的全局挠度模型;(iii) 基于季莫申科梁理论但考虑到节点存在的全局挠度模型;最后,(iv) 使用拉伸测量法的局部模型。对 UN 和 HT 样品的主要失效模式进行了描述和讨论,这些失效模式受含水量 (MC) 的影响。方法(i)和(ii)显示出良好的一致性,为评估 Eb 提供了可靠的参数。第三种方法(iii)表明,节点对茎秆的弯曲行为有很大影响。方法(iv)适用于确定 G,但得出的 Eb 值较高,通常不能代表材料。
Influence of elastic properties and nodes on the flexural behaviour of bamboo culms
This study investigates the influence of elastic properties and nodes on the flexural behaviour of bamboo culms by comparing different characterization techniques and theoretical approaches. The most representative parts of the bamboo culm were selected using microscopic images of bamboo cross-sections. These were sliced from the bottom, middle, and top parts of a single culm and were analyzed with Digital Image Processing. Four-point bending tests were conducted on twelve culms of Phyllostachys aurea, subdivided into groups of untreated (UN) and heat-treated (HT) samples. The axial modulus of elasticity (Eb) and the shear modulus (G) were determined experimentally using four different mathematical models: (i) a global deflection model using the Euler-Bernoulli beam theory according to the ISO Standard; (ii) a global deflection model using the Timoshenko beam theory; (iii) a global deflection model based on the Timoshenko beam theory but accounting for the presence of nodes; and finally, (iv) a local model using extensometry. The dominant failure modes for UN and HT samples are described and discussed, and were influenced by the moisture content (MC). Approaches (i) and (ii) showed good agreement, giving reliable parameters to assess Eb. The third approach (iii) indicated that the nodes significantly influence the flexural behaviour of the culms. Approach (iv) was appropriate for determining G, but resulted in higher values of Eb, typically not representative of the material.