扩展舒尔函数和渐开线相关基数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Spencer Daugherty
{"title":"扩展舒尔函数和渐开线相关基数","authors":"Spencer Daugherty","doi":"10.1016/j.aam.2024.102770","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce two new bases of <span><math><mi>Q</mi><mi>S</mi><mi>y</mi><mi>m</mi></math></span>, the reverse extended Schur functions and the row-strict reverse extended Schur functions, as well as their duals in <em>NSym</em>, the reverse shin functions and row-strict reverse shin functions. These bases are the images of the extended Schur basis and shin basis under the involutions <em>ρ</em> and <em>ω</em>, which generalize the classical involution <em>ω</em> on the symmetric functions. In addition, we prove a Jacobi-Trudi rule for certain shin functions using creation operators. We define skew extended Schur functions and skew-II extended Schur functions based on left and right actions of <em>NSym</em> and <span><math><mi>Q</mi><mi>S</mi><mi>y</mi><mi>m</mi></math></span> respectively. We then use the involutions <em>ρ</em> and <em>ω</em> to translate these and other known results to our reverse and row-strict reverse bases.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Schur functions and bases related by involutions\",\"authors\":\"Spencer Daugherty\",\"doi\":\"10.1016/j.aam.2024.102770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce two new bases of <span><math><mi>Q</mi><mi>S</mi><mi>y</mi><mi>m</mi></math></span>, the reverse extended Schur functions and the row-strict reverse extended Schur functions, as well as their duals in <em>NSym</em>, the reverse shin functions and row-strict reverse shin functions. These bases are the images of the extended Schur basis and shin basis under the involutions <em>ρ</em> and <em>ω</em>, which generalize the classical involution <em>ω</em> on the symmetric functions. In addition, we prove a Jacobi-Trudi rule for certain shin functions using creation operators. We define skew extended Schur functions and skew-II extended Schur functions based on left and right actions of <em>NSym</em> and <span><math><mi>Q</mi><mi>S</mi><mi>y</mi><mi>m</mi></math></span> respectively. We then use the involutions <em>ρ</em> and <em>ω</em> to translate these and other known results to our reverse and row-strict reverse bases.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了 QSym 的两个新基,即反向扩展舒尔函数和行严格反向扩展舒尔函数,以及它们在 NSym 中的对偶基,即反向歆函数和行严格反向歆函数。这些基是扩展舒尔基和胫基在卷积 ρ 和 ω 下的映像,而卷积 ρ 和 ω 是对称函数上经典卷积 ω 的一般化。此外,我们还利用创造算子证明了某些歆函数的雅各比-特鲁迪法则。我们分别基于 NSym 和 QSym 的左作用和右作用定义了偏斜扩展舒尔函数和偏斜-II 扩展舒尔函数。然后,我们使用渐开线 ρ 和 ω 将这些结果和其他已知结果转化为我们的反向基和行严格反向基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Schur functions and bases related by involutions

We introduce two new bases of QSym, the reverse extended Schur functions and the row-strict reverse extended Schur functions, as well as their duals in NSym, the reverse shin functions and row-strict reverse shin functions. These bases are the images of the extended Schur basis and shin basis under the involutions ρ and ω, which generalize the classical involution ω on the symmetric functions. In addition, we prove a Jacobi-Trudi rule for certain shin functions using creation operators. We define skew extended Schur functions and skew-II extended Schur functions based on left and right actions of NSym and QSym respectively. We then use the involutions ρ and ω to translate these and other known results to our reverse and row-strict reverse bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信