奇素数情况下存在丹尼斯顿偏差集

IF 1.2 3区 数学 Q1 MATHEMATICS
James A. Davis , Sophie Huczynska , Laura Johnson , John Polhill
{"title":"奇素数情况下存在丹尼斯顿偏差集","authors":"James A. Davis ,&nbsp;Sophie Huczynska ,&nbsp;Laura Johnson ,&nbsp;John Polhill","doi":"10.1016/j.ffa.2024.102499","DOIUrl":null,"url":null,"abstract":"<div><p>Denniston constructed partial difference sets (PDSs) with the parameters <span><math><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> in elementary abelian groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>≤</mo><mi>r</mi><mo>&lt;</mo><mi>m</mi></math></span>. These correspond to maximal arcs in Desarguesian projective planes of even order. In this paper, we show that - although maximal arcs do not exist in Desarguesian projective planes of odd order - PDSs with the Denniston parameters <span><math><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> exist in all elementary abelian groups of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> where <em>p</em> is an odd prime, and present a construction. Our approach uses PDSs formed as unions of cyclotomic classes.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724001382/pdfft?md5=03b1e738d3c4bc750b4b0f4af02289e1&pid=1-s2.0-S1071579724001382-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Denniston partial difference sets exist in the odd prime case\",\"authors\":\"James A. Davis ,&nbsp;Sophie Huczynska ,&nbsp;Laura Johnson ,&nbsp;John Polhill\",\"doi\":\"10.1016/j.ffa.2024.102499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Denniston constructed partial difference sets (PDSs) with the parameters <span><math><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> in elementary abelian groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>≤</mo><mi>r</mi><mo>&lt;</mo><mi>m</mi></math></span>. These correspond to maximal arcs in Desarguesian projective planes of even order. In this paper, we show that - although maximal arcs do not exist in Desarguesian projective planes of odd order - PDSs with the Denniston parameters <span><math><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> exist in all elementary abelian groups of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn><mi>m</mi></mrow></msup></math></span> for all <span><math><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> where <em>p</em> is an odd prime, and present a construction. Our approach uses PDSs formed as unions of cyclotomic classes.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001382/pdfft?md5=03b1e738d3c4bc750b4b0f4af02289e1&pid=1-s2.0-S1071579724001382-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001382\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001382","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

丹尼斯顿构造了参数为(23m,(2m+r-2m+2r)(2m-1),2m-2r+(2m+r-2m+2r)(2r-2),(2m+r-2m+2r)(2r-1))的23m阶基本阿贝尔群中的局部差集(PDSs),对于所有m≥2,1≤r<m。这些弧对应于偶数阶笛卡尔投影面中的最大弧。在本文中,我们将证明--尽管奇阶笛卡尔投影面中不存在最大弧--但具有丹尼斯顿参数 (p3m,(pm+r-pm+pr)(pm-1)、pm-pr+(pm+r-pm+pr)(pr-2),(pm+r-pm+pr)(pr-1))的 PDS 存在于所有 m≥2,r∈{1,m-1} 的 p3m 阶基本阿贝尔群中,其中 p 是奇素数。我们的方法使用的 PDS 是环类的联合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Denniston partial difference sets exist in the odd prime case

Denniston constructed partial difference sets (PDSs) with the parameters (23m,(2m+r2m+2r)(2m1),2m2r+(2m+r2m+2r)(2r2),(2m+r2m+2r)(2r1)) in elementary abelian groups of order 23m for all m2,1r<m. These correspond to maximal arcs in Desarguesian projective planes of even order. In this paper, we show that - although maximal arcs do not exist in Desarguesian projective planes of odd order - PDSs with the Denniston parameters (p3m,(pm+rpm+pr)(pm1),pmpr+(pm+rpm+pr)(pr2),(pm+rpm+pr)(pr1)) exist in all elementary abelian groups of order p3m for all m2,r{1,m1} where p is an odd prime, and present a construction. Our approach uses PDSs formed as unions of cyclotomic classes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信