{"title":"班轮运输网络的动态弹性分析:从结构到合作机制","authors":"","doi":"10.1016/j.tre.2024.103755","DOIUrl":null,"url":null,"abstract":"<div><p>Liner shipping networks play a vital role in global and regional trade. However, they are susceptible to damage from unexpected interruptions, which can trigger dynamic cascading failures and undermine the system’s resilience. To address this challenge, we propose a novel cascading failure model for liner shipping networks that considers the characteristics of the network structure and port functions. First, we design two load redistribution methods that rely on network topology and employ a cooperative mechanism for coordination. This cooperative mechanism aims to balance the benefits for carriers and shippers by effectively controlling losses. Subsequently, we develop three metrics—network congestion rate, failure rate, and shipper loss—to assess the resilience of the network during cascading failures. To verify the impact of the cooperative mechanism, we apply the proposed methods to the China-Europe liner shipping network. Through simulations involving various port failures and resistance levels, we analyze the effectiveness of the cooperative mechanism. The results demonstrate that redistributing the load to downstream ports within the network effectively mitigates deep cascading failures. Additionally, the implementation of a port cooperative mechanism enhances resilience in the face of uncertainties by safeguarding crucial ports within the network and significantly reducing shipper losses. When port resistance is low, the cooperative mechanism reduces shipper losses by nearly half and lowers the average congestion rate. Although port reserve capacity can resist cascading failures, it falls short in the face of severe disruptions. In such cases, the cooperative mechanism compensates for capacity shortages, enhancing port resilience at a low cost. This study contributes to combating and minimizing cascading congestion in liner shipping networks, offering valuable insights for risk prevention and management strategies for ports and shipping companies. It also has implications for yield management and policy decisions from a network perspective.</p></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic resilience analysis of the liner shipping network: From structure to cooperative mechanism\",\"authors\":\"\",\"doi\":\"10.1016/j.tre.2024.103755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liner shipping networks play a vital role in global and regional trade. However, they are susceptible to damage from unexpected interruptions, which can trigger dynamic cascading failures and undermine the system’s resilience. To address this challenge, we propose a novel cascading failure model for liner shipping networks that considers the characteristics of the network structure and port functions. First, we design two load redistribution methods that rely on network topology and employ a cooperative mechanism for coordination. This cooperative mechanism aims to balance the benefits for carriers and shippers by effectively controlling losses. Subsequently, we develop three metrics—network congestion rate, failure rate, and shipper loss—to assess the resilience of the network during cascading failures. To verify the impact of the cooperative mechanism, we apply the proposed methods to the China-Europe liner shipping network. Through simulations involving various port failures and resistance levels, we analyze the effectiveness of the cooperative mechanism. The results demonstrate that redistributing the load to downstream ports within the network effectively mitigates deep cascading failures. Additionally, the implementation of a port cooperative mechanism enhances resilience in the face of uncertainties by safeguarding crucial ports within the network and significantly reducing shipper losses. When port resistance is low, the cooperative mechanism reduces shipper losses by nearly half and lowers the average congestion rate. Although port reserve capacity can resist cascading failures, it falls short in the face of severe disruptions. In such cases, the cooperative mechanism compensates for capacity shortages, enhancing port resilience at a low cost. This study contributes to combating and minimizing cascading congestion in liner shipping networks, offering valuable insights for risk prevention and management strategies for ports and shipping companies. It also has implications for yield management and policy decisions from a network perspective.</p></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554524003466\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524003466","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Dynamic resilience analysis of the liner shipping network: From structure to cooperative mechanism
Liner shipping networks play a vital role in global and regional trade. However, they are susceptible to damage from unexpected interruptions, which can trigger dynamic cascading failures and undermine the system’s resilience. To address this challenge, we propose a novel cascading failure model for liner shipping networks that considers the characteristics of the network structure and port functions. First, we design two load redistribution methods that rely on network topology and employ a cooperative mechanism for coordination. This cooperative mechanism aims to balance the benefits for carriers and shippers by effectively controlling losses. Subsequently, we develop three metrics—network congestion rate, failure rate, and shipper loss—to assess the resilience of the network during cascading failures. To verify the impact of the cooperative mechanism, we apply the proposed methods to the China-Europe liner shipping network. Through simulations involving various port failures and resistance levels, we analyze the effectiveness of the cooperative mechanism. The results demonstrate that redistributing the load to downstream ports within the network effectively mitigates deep cascading failures. Additionally, the implementation of a port cooperative mechanism enhances resilience in the face of uncertainties by safeguarding crucial ports within the network and significantly reducing shipper losses. When port resistance is low, the cooperative mechanism reduces shipper losses by nearly half and lowers the average congestion rate. Although port reserve capacity can resist cascading failures, it falls short in the face of severe disruptions. In such cases, the cooperative mechanism compensates for capacity shortages, enhancing port resilience at a low cost. This study contributes to combating and minimizing cascading congestion in liner shipping networks, offering valuable insights for risk prevention and management strategies for ports and shipping companies. It also has implications for yield management and policy decisions from a network perspective.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.