{"title":"LogPath:基于日志数据的能耗分析,实现电动汽车路径优化","authors":"","doi":"10.1016/j.trd.2024.104387","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle navigation and path optimization require a more meticulous approach when it deals with EVs (electric vehicles) and SDVs (software-defined vehicles), due to lengthy charging times and the lack of charging infrastructure. Long-distance freight EV trucking needs path guidance with accurate energy consumption estimates to prevent charging-related failures. We developed a novel energy consumption estimation approach that only uses battery log data to extract major vehicle parameters to increase EV navigation accuracy without additional sensors. This is enabled by extracting multiple drive modes from the log data for analysis. The system provides 1) routes, 2) charge locations, 3) charging times, and 4) optimal vehicle speeds that guarantee the shortest travel time. We successfully validated the system using log data collected from an EV and Tesla’s Supercharging map in the US and compared it with the commercially available navigation system, Tesla’s trip planner, whose capabilities solely include charging time and routing.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LogPath: Log data based energy consumption analysis enabling electric vehicle path optimization\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicle navigation and path optimization require a more meticulous approach when it deals with EVs (electric vehicles) and SDVs (software-defined vehicles), due to lengthy charging times and the lack of charging infrastructure. Long-distance freight EV trucking needs path guidance with accurate energy consumption estimates to prevent charging-related failures. We developed a novel energy consumption estimation approach that only uses battery log data to extract major vehicle parameters to increase EV navigation accuracy without additional sensors. This is enabled by extracting multiple drive modes from the log data for analysis. The system provides 1) routes, 2) charge locations, 3) charging times, and 4) optimal vehicle speeds that guarantee the shortest travel time. We successfully validated the system using log data collected from an EV and Tesla’s Supercharging map in the US and compared it with the commercially available navigation system, Tesla’s trip planner, whose capabilities solely include charging time and routing.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003444\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003444","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
LogPath: Log data based energy consumption analysis enabling electric vehicle path optimization
Vehicle navigation and path optimization require a more meticulous approach when it deals with EVs (electric vehicles) and SDVs (software-defined vehicles), due to lengthy charging times and the lack of charging infrastructure. Long-distance freight EV trucking needs path guidance with accurate energy consumption estimates to prevent charging-related failures. We developed a novel energy consumption estimation approach that only uses battery log data to extract major vehicle parameters to increase EV navigation accuracy without additional sensors. This is enabled by extracting multiple drive modes from the log data for analysis. The system provides 1) routes, 2) charge locations, 3) charging times, and 4) optimal vehicle speeds that guarantee the shortest travel time. We successfully validated the system using log data collected from an EV and Tesla’s Supercharging map in the US and compared it with the commercially available navigation system, Tesla’s trip planner, whose capabilities solely include charging time and routing.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.