{"title":"分层修饰铝/钛层压复合材料中的双峰晶粒结构,实现超凡的强度-电导率协同效应","authors":"","doi":"10.1016/j.compositesa.2024.108438","DOIUrl":null,"url":null,"abstract":"<div><p>Al/Ti laminates with altering Al grain sizes was fabricated via hot press sintering. Fine Al powders results in low sintering density and obvious cracks at Al/Ti interface. Large Al powders greatly increased the grain size, grain aspect ratio, LAGBs fraction, and recrystallization fraction of the Al layers. The texture heterogeneity is also significant, with rolling texture in Ti layer and random texture in Al layer. Ti<sub>5</sub>Si<sub>3</sub> phase precipitated at Al/Ti interface, and it gradually partitioned Ti atoms from TiAl<sub>3</sub> and hindered the formation of TiAl<sub>3</sub>. Moreover, numerous stacking faults, dislocation loops, dislocation pinning, and dislocation tangles were observed at Al/Ti interface, resulting in an increased back stress. Large Al grains contributes the highest bending strength of 734.8 MPa, tensile strength of 753.2 MPa, and fracture strain of 71 %. The effect of grain size on work hardening was attributed to the fraction of LAGBs, dislocation storage capacity and additional HDI strengthening.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical modification of bimodal grain structure in Al/Ti laminated composites for extraordinary strength-ductility synergy\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Al/Ti laminates with altering Al grain sizes was fabricated via hot press sintering. Fine Al powders results in low sintering density and obvious cracks at Al/Ti interface. Large Al powders greatly increased the grain size, grain aspect ratio, LAGBs fraction, and recrystallization fraction of the Al layers. The texture heterogeneity is also significant, with rolling texture in Ti layer and random texture in Al layer. Ti<sub>5</sub>Si<sub>3</sub> phase precipitated at Al/Ti interface, and it gradually partitioned Ti atoms from TiAl<sub>3</sub> and hindered the formation of TiAl<sub>3</sub>. Moreover, numerous stacking faults, dislocation loops, dislocation pinning, and dislocation tangles were observed at Al/Ti interface, resulting in an increased back stress. Large Al grains contributes the highest bending strength of 734.8 MPa, tensile strength of 753.2 MPa, and fracture strain of 71 %. The effect of grain size on work hardening was attributed to the fraction of LAGBs, dislocation storage capacity and additional HDI strengthening.</p></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24004354\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24004354","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Hierarchical modification of bimodal grain structure in Al/Ti laminated composites for extraordinary strength-ductility synergy
Al/Ti laminates with altering Al grain sizes was fabricated via hot press sintering. Fine Al powders results in low sintering density and obvious cracks at Al/Ti interface. Large Al powders greatly increased the grain size, grain aspect ratio, LAGBs fraction, and recrystallization fraction of the Al layers. The texture heterogeneity is also significant, with rolling texture in Ti layer and random texture in Al layer. Ti5Si3 phase precipitated at Al/Ti interface, and it gradually partitioned Ti atoms from TiAl3 and hindered the formation of TiAl3. Moreover, numerous stacking faults, dislocation loops, dislocation pinning, and dislocation tangles were observed at Al/Ti interface, resulting in an increased back stress. Large Al grains contributes the highest bending strength of 734.8 MPa, tensile strength of 753.2 MPa, and fracture strain of 71 %. The effect of grain size on work hardening was attributed to the fraction of LAGBs, dislocation storage capacity and additional HDI strengthening.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.