Abdullah Alghamdi , Mohammed Alissa , Suad A. Alghamdi , Mohammed A. Alshehri , Meshari A. Alsuwat , Amani Alghamdi
{"title":"在大鼠模型中使用白藜芦醇抑制环磷酰胺毒性引起的急性肾损伤的肾小球损伤、炎症、细胞凋亡和氧化应激反应","authors":"Abdullah Alghamdi , Mohammed Alissa , Suad A. Alghamdi , Mohammed A. Alshehri , Meshari A. Alsuwat , Amani Alghamdi","doi":"10.1016/j.tice.2024.102548","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclophosphamide (CP) is a chemotherapy drug that can be used to treat different types of cancers, but its nephrotoxicity effects restrict its usage in clinical settings. Currently, we examined whether the polyphenolic antioxidant and anti-inflammatory compound, resveratrol (RES), can protect against CP-induced nephrotoxicity. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, RES group which received RES (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+RES group which was similar of the RES and CP groups. Tissue samples were obtained for the stereological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that the numerical density of glomerulus, total volumes and interstitial tissue volumes of kidney, antioxidative biomarkers concentrations (CAT, GSH, SOD), and expression levels of OCT2 gene were notably greater in the CP+RES group than the CP group (P<0.05). During treatment, there was a significant decrease in the serum levels of the urea and creatinine, the densities of apoptotic and inflammatory cells, as well as levels of MDA and proinflammatory cytokines (IL-1β, TNF-α, and PFN1) in the CP+RES group than the CP group (P<0.05). We deduce that giving RES can suppress of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by CP toxicity.</p></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"91 ","pages":"Article 102548"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by cyclophosphamide toxicity using resveratrol in rat models\",\"authors\":\"Abdullah Alghamdi , Mohammed Alissa , Suad A. Alghamdi , Mohammed A. Alshehri , Meshari A. Alsuwat , Amani Alghamdi\",\"doi\":\"10.1016/j.tice.2024.102548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyclophosphamide (CP) is a chemotherapy drug that can be used to treat different types of cancers, but its nephrotoxicity effects restrict its usage in clinical settings. Currently, we examined whether the polyphenolic antioxidant and anti-inflammatory compound, resveratrol (RES), can protect against CP-induced nephrotoxicity. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, RES group which received RES (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+RES group which was similar of the RES and CP groups. Tissue samples were obtained for the stereological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that the numerical density of glomerulus, total volumes and interstitial tissue volumes of kidney, antioxidative biomarkers concentrations (CAT, GSH, SOD), and expression levels of OCT2 gene were notably greater in the CP+RES group than the CP group (P<0.05). During treatment, there was a significant decrease in the serum levels of the urea and creatinine, the densities of apoptotic and inflammatory cells, as well as levels of MDA and proinflammatory cytokines (IL-1β, TNF-α, and PFN1) in the CP+RES group than the CP group (P<0.05). We deduce that giving RES can suppress of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by CP toxicity.</p></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"91 \",\"pages\":\"Article 102548\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816624002490\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002490","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Suppression of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by cyclophosphamide toxicity using resveratrol in rat models
Cyclophosphamide (CP) is a chemotherapy drug that can be used to treat different types of cancers, but its nephrotoxicity effects restrict its usage in clinical settings. Currently, we examined whether the polyphenolic antioxidant and anti-inflammatory compound, resveratrol (RES), can protect against CP-induced nephrotoxicity. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, RES group which received RES (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+RES group which was similar of the RES and CP groups. Tissue samples were obtained for the stereological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that the numerical density of glomerulus, total volumes and interstitial tissue volumes of kidney, antioxidative biomarkers concentrations (CAT, GSH, SOD), and expression levels of OCT2 gene were notably greater in the CP+RES group than the CP group (P<0.05). During treatment, there was a significant decrease in the serum levels of the urea and creatinine, the densities of apoptotic and inflammatory cells, as well as levels of MDA and proinflammatory cytokines (IL-1β, TNF-α, and PFN1) in the CP+RES group than the CP group (P<0.05). We deduce that giving RES can suppress of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by CP toxicity.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.