{"title":"芸苔素类固醇通过调节营养平衡和清除活性氧提高马铃薯对缺磷胁迫的抗性","authors":"","doi":"10.1016/j.envexpbot.2024.105954","DOIUrl":null,"url":null,"abstract":"<div><p>Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene <em>StCYP85A1</em> in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of <em>StCYP85A1</em> altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brassinosteroid improves resistance to phosphorus deficiency stress through regulating nutrient balance and reactive oxygen species scavenging in potato\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene <em>StCYP85A1</em> in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of <em>StCYP85A1</em> altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003125\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Brassinosteroid improves resistance to phosphorus deficiency stress through regulating nutrient balance and reactive oxygen species scavenging in potato
Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene StCYP85A1 in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of StCYP85A1 altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.