芸苔素类固醇通过调节营养平衡和清除活性氧提高马铃薯对缺磷胁迫的抗性

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES
{"title":"芸苔素类固醇通过调节营养平衡和清除活性氧提高马铃薯对缺磷胁迫的抗性","authors":"","doi":"10.1016/j.envexpbot.2024.105954","DOIUrl":null,"url":null,"abstract":"<div><p>Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene <em>StCYP85A1</em> in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of <em>StCYP85A1</em> altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brassinosteroid improves resistance to phosphorus deficiency stress through regulating nutrient balance and reactive oxygen species scavenging in potato\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene <em>StCYP85A1</em> in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of <em>StCYP85A1</em> altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003125\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

芸苔素类固醇(BR)在植物的生长、发育和对非生物胁迫的反应中起着至关重要的作用。然而,芸苔素类固醇(BR)调控马铃薯植株对缺磷胁迫响应的机理在很大程度上仍是未知的。本研究考察了BR对缺磷条件下马铃薯植株生长的影响。外源BR的施用减轻了缺磷胁迫引起的生长抑制。转录组分析表明,在缺磷条件下,BR的应用改变了参与丝裂原活化蛋白激酶(MAPK)信号通路、植物激素信号转导以及氮和磷代谢的基因的表达。进一步的基因本体(GO)分析表明,与活性氧清除过程相关的基因显著富集。在拟南芥中异位表达马铃薯铜绿素合成基因 StCYP85A1 提高了转基因植株对缺磷胁迫的抗性,表现为萌芽绿化率和根系生长的增加。实时定量 PCR 和抗氧化酶活性分析表明,StCYP85A1 的异位表达改变了转基因植株中氮、磷代谢相关基因的表达,促进了抗氧化酶的活性。这些研究结果表明,BR通过调节养分平衡和活性氧清除,提高了马铃薯植株对缺磷胁迫的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brassinosteroid improves resistance to phosphorus deficiency stress through regulating nutrient balance and reactive oxygen species scavenging in potato

Brassinosteroid (BR) plays a crucial role in plant growth, development and response to abiotic stress. However, the mechanism by which BR regulates the response of potato plants to phosphorus deficiency stress is still largely unknown. In this work, the effects of BR on the growth of potato plants under phosphorus deficient condition were investigated. Exogenous BR application mitigated the growth inhibition caused by phosphorus deficiency stress. Transcriptomic analyses revealed that BR application altered the expression of genes involved in mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and nitrogen and phosphorus metabolisms under phosphorus deficient condition. Further gene ontology (GO) analysis indicated a significant enrichment of genes associated with reactive oxygen species scavenging process. Ectopic expression of potato brassinosteroid synthesis gene StCYP85A1 in Arabidopsis improved the resistance of transgenic plants to phosphorus deficiency stress, as indicated by the increased germination greening ratio and root growth. Quantitative real time PCR and antioxidant enzyme activity analysis revealed that ectopic expression of StCYP85A1 altered the expression of genes related to nitrogen and phosphorus metabolism, and promoted antioxidant enzyme activity in transgenic plants. These findings indicated that BR improved the tolerance of potato plants to phosphorus deficiency stress by regulating nutrient homeostasis and reactive oxygen species scavenging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信