{"title":"研究 6H-SiC/Al 界面的键强度和电子特性:基于第一原理计算","authors":"","doi":"10.1016/j.ijadhadh.2024.103817","DOIUrl":null,"url":null,"abstract":"<div><p>As the medium between the reinforcement and the matrix, the interface plays a critical role in the mechanical properties of silicon carbide particle reinforced aluminum matrix composites. This study used first-principles calculation methods to systematically analyze 14 different 6H-SiC/Al low-index interfaces, including atomic configuration, interface bonding strength, and electronic structure and bonding principles between interfaces. The adhesion work calculations reveal that the C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) interfaces have larger adhesion work values, specifically 5.09 J/m<sup>2</sup> and 5.021 J/m<sup>2</sup>, respectively. Additionally, the rigid tensile testing confirms that the tensile stress values at the interfaces of C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) are higher, measuring 36.4 GPa and 32.5 GPa, respectively. The above results show that the interface bonding strength of these two configurations is the highest, the most stable, and most likely to appear in the 6H-SiC/Al interface configuration. The results of the analysis on charge density difference and partial density of states indicate that the interfaces of C-top-SiC (0001)/Al (111) and SiC (0001)/Al (100) are primarily composed of strong ionic and covalent bonds.</p></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of bond strength and electronic properties at the 6H-SiC/Al interface: Based on first-principles calculations\",\"authors\":\"\",\"doi\":\"10.1016/j.ijadhadh.2024.103817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the medium between the reinforcement and the matrix, the interface plays a critical role in the mechanical properties of silicon carbide particle reinforced aluminum matrix composites. This study used first-principles calculation methods to systematically analyze 14 different 6H-SiC/Al low-index interfaces, including atomic configuration, interface bonding strength, and electronic structure and bonding principles between interfaces. The adhesion work calculations reveal that the C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) interfaces have larger adhesion work values, specifically 5.09 J/m<sup>2</sup> and 5.021 J/m<sup>2</sup>, respectively. Additionally, the rigid tensile testing confirms that the tensile stress values at the interfaces of C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) are higher, measuring 36.4 GPa and 32.5 GPa, respectively. The above results show that the interface bonding strength of these two configurations is the highest, the most stable, and most likely to appear in the 6H-SiC/Al interface configuration. The results of the analysis on charge density difference and partial density of states indicate that the interfaces of C-top-SiC (0001)/Al (111) and SiC (0001)/Al (100) are primarily composed of strong ionic and covalent bonds.</p></div>\",\"PeriodicalId\":13732,\"journal\":{\"name\":\"International Journal of Adhesion and Adhesives\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adhesion and Adhesives\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143749624001994\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624001994","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study of bond strength and electronic properties at the 6H-SiC/Al interface: Based on first-principles calculations
As the medium between the reinforcement and the matrix, the interface plays a critical role in the mechanical properties of silicon carbide particle reinforced aluminum matrix composites. This study used first-principles calculation methods to systematically analyze 14 different 6H-SiC/Al low-index interfaces, including atomic configuration, interface bonding strength, and electronic structure and bonding principles between interfaces. The adhesion work calculations reveal that the C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) interfaces have larger adhesion work values, specifically 5.09 J/m2 and 5.021 J/m2, respectively. Additionally, the rigid tensile testing confirms that the tensile stress values at the interfaces of C-top-SiC(0001)/Al (111) and SiC(0001)/Al (100) are higher, measuring 36.4 GPa and 32.5 GPa, respectively. The above results show that the interface bonding strength of these two configurations is the highest, the most stable, and most likely to appear in the 6H-SiC/Al interface configuration. The results of the analysis on charge density difference and partial density of states indicate that the interfaces of C-top-SiC (0001)/Al (111) and SiC (0001)/Al (100) are primarily composed of strong ionic and covalent bonds.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.