友谊之火:先天免疫系统识别自我

IF 6.6 2区 医学 Q1 IMMUNOLOGY
Veit Hornung , Moritz M Gaidt
{"title":"友谊之火:先天免疫系统识别自我","authors":"Veit Hornung ,&nbsp;Moritz M Gaidt","doi":"10.1016/j.coi.2024.102457","DOIUrl":null,"url":null,"abstract":"<div><p>The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to ‘friendly fire’ rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.</p></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friendly fire: recognition of self by the innate immune system\",\"authors\":\"Veit Hornung ,&nbsp;Moritz M Gaidt\",\"doi\":\"10.1016/j.coi.2024.102457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to ‘friendly fire’ rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.</p></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952791524000475\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791524000475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

先天性免疫系统采用两种不同的策略来检测病原体:首先,它将微生物成分识别为模式识别受体的配体(模式触发免疫 [PTI]);其次,它检测病原体编码的效应物的活动(效应物触发免疫 [ETI])。最近,这些以病原体为中心的概念被扩展到包括感知细胞受损时自身产生的信号(损伤触发免疫[DTI])。这一扩展依赖于拓宽 PTI 模型,将损伤相关分子模式(DAMPs)纳入其中。然而,将 PTI 的模式识别框架应用于 DTI 忽略了 ETI 通路无菌激活的关键作用。我们认为,PTI 和 ETI 途径都容易错误地检测到自身,这主要归因于 "友军误伤 "而非保护性免疫激活。这种错误的激活是免疫感知的敏感性和特异性之间权衡的固有结果,可能会被容忍,因为其有害影响在生命晚期才出现,这种现象被称为拮抗性多生物效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friendly fire: recognition of self by the innate immune system

The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to ‘friendly fire’ rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
1.40%
发文量
94
审稿时长
67 days
期刊介绍: Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students. Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信