使用区间值变量自动编码器在生成模型中整合不精确数据

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Luciano Sánchez , Nahuel Costa , Inés Couso , Olivier Strauss
{"title":"使用区间值变量自动编码器在生成模型中整合不精确数据","authors":"Luciano Sánchez ,&nbsp;Nahuel Costa ,&nbsp;Inés Couso ,&nbsp;Olivier Strauss","doi":"10.1016/j.inffus.2024.102659","DOIUrl":null,"url":null,"abstract":"<div><p>Variational Autoencoders (VAEs) enable the integration of diverse data sources into a unified latent representation, facilitating the fusion of information from various inputs and the creation of disentangled representations that separate different factors of variation in the data. Traditional VAEs, however, are limited by assuming a single prior distribution for latent variables, which restricts their ability to handle epistemic uncertainty from imprecise measurements and incomplete data. This paper introduces the Interval-Valued Variational Autoencoder (iVAE), which employs a family of prior distributions and incorporates specialized neurons and redefined objective functions for handling interval-valued data. This architecture maintains computational efficiency while extending the model’s applicability to scenarios with pronounced epistemic uncertainty. The iVAE’s efficacy is demonstrated in managing two types of data: intrinsically interval-valued and noisy data preprocessed into interval formats. The first category is exemplified by a graphical analysis of questionnaires, while the second involves case studies focused on estimating the remaining useful life of aviation engines, where the iVAE outperforms traditional methods, thereby providing more accurate diagnostics and robust predictions.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566253524004378/pdfft?md5=55dad9708af5cfd29ef59b45dd4d7295&pid=1-s2.0-S1566253524004378-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating imprecise data in generative models using interval-valued Variational Autoencoders\",\"authors\":\"Luciano Sánchez ,&nbsp;Nahuel Costa ,&nbsp;Inés Couso ,&nbsp;Olivier Strauss\",\"doi\":\"10.1016/j.inffus.2024.102659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variational Autoencoders (VAEs) enable the integration of diverse data sources into a unified latent representation, facilitating the fusion of information from various inputs and the creation of disentangled representations that separate different factors of variation in the data. Traditional VAEs, however, are limited by assuming a single prior distribution for latent variables, which restricts their ability to handle epistemic uncertainty from imprecise measurements and incomplete data. This paper introduces the Interval-Valued Variational Autoencoder (iVAE), which employs a family of prior distributions and incorporates specialized neurons and redefined objective functions for handling interval-valued data. This architecture maintains computational efficiency while extending the model’s applicability to scenarios with pronounced epistemic uncertainty. The iVAE’s efficacy is demonstrated in managing two types of data: intrinsically interval-valued and noisy data preprocessed into interval formats. The first category is exemplified by a graphical analysis of questionnaires, while the second involves case studies focused on estimating the remaining useful life of aviation engines, where the iVAE outperforms traditional methods, thereby providing more accurate diagnostics and robust predictions.</p></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566253524004378/pdfft?md5=55dad9708af5cfd29ef59b45dd4d7295&pid=1-s2.0-S1566253524004378-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524004378\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004378","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变异自动编码器(VAEs)能够将不同的数据源整合到统一的潜在表示中,促进来自不同输入的信息的融合,并创建分离数据中不同变异因素的分离表示。然而,传统的 VAE 受限于假设潜在变量的单一先验分布,这限制了它们处理来自不精确测量和不完整数据的认识不确定性的能力。本文介绍了区间值变自编码器(iVAE),它采用了一系列先验分布,并结合了专门的神经元和重新定义的目标函数,以处理区间值数据。这种架构在保持计算效率的同时,还将模型的适用性扩展到了具有明显认识不确定性的场景。iVAE 的功效在管理两类数据时得到了证明:本质上的区间值数据和预处理成区间格式的噪声数据。第一类数据以问卷的图形分析为例,而第二类数据则涉及以估算航空发动机剩余使用寿命为重点的案例研究,在这些案例研究中,iVAE 优于传统方法,从而提供了更准确的诊断和更稳健的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating imprecise data in generative models using interval-valued Variational Autoencoders

Variational Autoencoders (VAEs) enable the integration of diverse data sources into a unified latent representation, facilitating the fusion of information from various inputs and the creation of disentangled representations that separate different factors of variation in the data. Traditional VAEs, however, are limited by assuming a single prior distribution for latent variables, which restricts their ability to handle epistemic uncertainty from imprecise measurements and incomplete data. This paper introduces the Interval-Valued Variational Autoencoder (iVAE), which employs a family of prior distributions and incorporates specialized neurons and redefined objective functions for handling interval-valued data. This architecture maintains computational efficiency while extending the model’s applicability to scenarios with pronounced epistemic uncertainty. The iVAE’s efficacy is demonstrated in managing two types of data: intrinsically interval-valued and noisy data preprocessed into interval formats. The first category is exemplified by a graphical analysis of questionnaires, while the second involves case studies focused on estimating the remaining useful life of aviation engines, where the iVAE outperforms traditional methods, thereby providing more accurate diagnostics and robust predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信