pH 值对水培条件下不同水稻品种的生长和镉积累的影响

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-09-04 DOI:10.1080/15592324.2024.2399429
Falian Lan, Xia Zou, Bao Guo, Xiaoyi Zhou, Dawei He, Zhenhua Zhang, Jin-Song Luo, Chunhua Dong
{"title":"pH 值对水培条件下不同水稻品种的生长和镉积累的影响","authors":"Falian Lan, Xia Zou, Bao Guo, Xiaoyi Zhou, Dawei He, Zhenhua Zhang, Jin-Song Luo, Chunhua Dong","doi":"10.1080/15592324.2024.2399429","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, applying lime to cadmium (Cd)-contaminated paddy fields to increase pH and reduce Cd availability is an effective method to control excessive Cd levels in rice grain. However, under hydroponic conditions, the impact of increased pH on Cd accumulation in different rice varieties remains unclear. This study employed three rice varieties (Yuzhenxiang, Shaoxiang 100, Xiangwanxian 12) with different Cd accumulation characteristics under different pH and long-term treatment with 1 μM CdCl<sub>2</sub>, to study the effect of pH on growth and Cd accumulation in different rice varieties. The result showed that as pH shifted from 5 to 8, the SPAD values, shoot dry weight, and plant height of the three rice varieties significantly decreased. The main root length, root volume, and root dry weight of Yuzhenxiang, and Shaoxiang100 significantly decreased. Conversely, the root architecture indicators of Xiangwanxian 12 did not change significantly. As for element accumulation, increasing the pH significantly increased the content of Mn in both the shoots and roots of all three varieties. Yuzhenxiang significantly reduced Cd content in both the shoots and roots of rice, while Shaoxiang100 significantly increased Cd content in both parts. Xiangwanxian 12 showed a significant increase in Cd content in the shoots but a decrease in the roots. In terms of subcellular distribution, Yuzhenxiang significantly reduced Cd concentrations in the cell wall and organelles of root cells, resulting in lower Cd concentrations in the root tissue. Conversely, Shaoxiang100 significantly increased Cd concentrations in the cell wall, organelles, and soluble fractions of root cells, leading to higher Cd concentrations in the root tissue. Xiangwanxian 12 also exhibited a decrease in Cd concentrations in the cell wall, organelles, and soluble fraction of root cells, resulting in lower Cd concentrations in the root tissue. Additionally, the expression of the OsNRAMP5 and OsHMA3 gene was significantly increased in Shaoxiang 100, while no significantly change in Yuzhenxiang and Xiangwanxian 12. These results provide important guidance on the impact of pH on Cd accumulation during the vegetative growth stage of different rice varieties.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of pH on growth and Cd accumulation in different rice varieties under hydroponics.\",\"authors\":\"Falian Lan, Xia Zou, Bao Guo, Xiaoyi Zhou, Dawei He, Zhenhua Zhang, Jin-Song Luo, Chunhua Dong\",\"doi\":\"10.1080/15592324.2024.2399429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, applying lime to cadmium (Cd)-contaminated paddy fields to increase pH and reduce Cd availability is an effective method to control excessive Cd levels in rice grain. However, under hydroponic conditions, the impact of increased pH on Cd accumulation in different rice varieties remains unclear. This study employed three rice varieties (Yuzhenxiang, Shaoxiang 100, Xiangwanxian 12) with different Cd accumulation characteristics under different pH and long-term treatment with 1 μM CdCl<sub>2</sub>, to study the effect of pH on growth and Cd accumulation in different rice varieties. The result showed that as pH shifted from 5 to 8, the SPAD values, shoot dry weight, and plant height of the three rice varieties significantly decreased. The main root length, root volume, and root dry weight of Yuzhenxiang, and Shaoxiang100 significantly decreased. Conversely, the root architecture indicators of Xiangwanxian 12 did not change significantly. As for element accumulation, increasing the pH significantly increased the content of Mn in both the shoots and roots of all three varieties. Yuzhenxiang significantly reduced Cd content in both the shoots and roots of rice, while Shaoxiang100 significantly increased Cd content in both parts. Xiangwanxian 12 showed a significant increase in Cd content in the shoots but a decrease in the roots. In terms of subcellular distribution, Yuzhenxiang significantly reduced Cd concentrations in the cell wall and organelles of root cells, resulting in lower Cd concentrations in the root tissue. Conversely, Shaoxiang100 significantly increased Cd concentrations in the cell wall, organelles, and soluble fractions of root cells, leading to higher Cd concentrations in the root tissue. Xiangwanxian 12 also exhibited a decrease in Cd concentrations in the cell wall, organelles, and soluble fraction of root cells, resulting in lower Cd concentrations in the root tissue. Additionally, the expression of the OsNRAMP5 and OsHMA3 gene was significantly increased in Shaoxiang 100, while no significantly change in Yuzhenxiang and Xiangwanxian 12. These results provide important guidance on the impact of pH on Cd accumulation during the vegetative growth stage of different rice varieties.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2024.2399429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2399429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,在受镉(Cd)污染的稻田中施用石灰以提高 pH 值并降低镉的可得性,是控制稻谷中镉含量超标的有效方法。然而,在水培条件下,提高 pH 值对不同水稻品种镉积累的影响仍不清楚。本研究采用三个具有不同镉积累特性的水稻品种(玉珍香、绍香 100、湘万仙 12),在不同 pH 值和 1 μM CdCl2 长期处理条件下,研究 pH 值对不同水稻品种生长和镉积累的影响。结果表明,当pH值从5变为8时,三个水稻品种的SPAD值、芽干重和株高都明显下降。裕珍香和绍香100的主根长度、根量和根干重明显下降。相反,湘晚12号的根系结构指标变化不大。在元素积累方面,pH 值的升高明显增加了三个品种芽和根中锰的含量。玉珍香明显降低了水稻芽和根中的镉含量,而绍湘100则明显增加了芽和根中的镉含量。湘晚12号在芽中的镉含量明显增加,但在根中的镉含量有所减少。在亚细胞分布方面,玉珍香明显降低了根细胞细胞壁和细胞器中的镉浓度,从而降低了根组织中的镉浓度。相反,绍香 100 则明显增加了根细胞细胞壁、细胞器和可溶性组分中的镉浓度,导致根组织中的镉浓度升高。湘皖仙 12 也显示根细胞的细胞壁、细胞器和可溶性部分的镉浓度下降,导致根组织中的镉浓度降低。此外,OsNRAMP5 和 OsHMA3 基因的表达量在绍香 100 中显著增加,而在玉珍香和香皖仙 12 中没有显著变化。这些结果为研究不同水稻品种无性生长阶段 pH 对镉积累的影响提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of pH on growth and Cd accumulation in different rice varieties under hydroponics.

Currently, applying lime to cadmium (Cd)-contaminated paddy fields to increase pH and reduce Cd availability is an effective method to control excessive Cd levels in rice grain. However, under hydroponic conditions, the impact of increased pH on Cd accumulation in different rice varieties remains unclear. This study employed three rice varieties (Yuzhenxiang, Shaoxiang 100, Xiangwanxian 12) with different Cd accumulation characteristics under different pH and long-term treatment with 1 μM CdCl2, to study the effect of pH on growth and Cd accumulation in different rice varieties. The result showed that as pH shifted from 5 to 8, the SPAD values, shoot dry weight, and plant height of the three rice varieties significantly decreased. The main root length, root volume, and root dry weight of Yuzhenxiang, and Shaoxiang100 significantly decreased. Conversely, the root architecture indicators of Xiangwanxian 12 did not change significantly. As for element accumulation, increasing the pH significantly increased the content of Mn in both the shoots and roots of all three varieties. Yuzhenxiang significantly reduced Cd content in both the shoots and roots of rice, while Shaoxiang100 significantly increased Cd content in both parts. Xiangwanxian 12 showed a significant increase in Cd content in the shoots but a decrease in the roots. In terms of subcellular distribution, Yuzhenxiang significantly reduced Cd concentrations in the cell wall and organelles of root cells, resulting in lower Cd concentrations in the root tissue. Conversely, Shaoxiang100 significantly increased Cd concentrations in the cell wall, organelles, and soluble fractions of root cells, leading to higher Cd concentrations in the root tissue. Xiangwanxian 12 also exhibited a decrease in Cd concentrations in the cell wall, organelles, and soluble fraction of root cells, resulting in lower Cd concentrations in the root tissue. Additionally, the expression of the OsNRAMP5 and OsHMA3 gene was significantly increased in Shaoxiang 100, while no significantly change in Yuzhenxiang and Xiangwanxian 12. These results provide important guidance on the impact of pH on Cd accumulation during the vegetative growth stage of different rice varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信