Burak Sarıkaya, İrem Demiralp Yatar, Soner Yılmaz, Yasin Tiryaki, Vahibe Aydın Sarıkaya, Rıza Aytaç Çetinkaya, Duygu Kırkık
{"title":"抗-HCV 信号与截断比值在预测丙型肝炎病毒血症中的作用以及基因型差异对信号与截断比值的影响。","authors":"Burak Sarıkaya, İrem Demiralp Yatar, Soner Yılmaz, Yasin Tiryaki, Vahibe Aydın Sarıkaya, Rıza Aytaç Çetinkaya, Duygu Kırkık","doi":"10.1590/1806-9282.20240370","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In the hepatitis C virus (HCV) diagnostic algorithm, an anti-HCV screening test is recommended first. In countries with low HCV prevalence, anti-HCV testing can often give false-positive results. This may lead to unnecessary retesting, increased costs, and psychological stress for patients.</p><p><strong>Methods: </strong>In this study, the most appropriate S/Co (signal-cutoff) value to predict HCV viremia in anti-HCV test(+) individuals was determined, and the effect of genotype differences was evaluated. Of the 96,515 anti-HCV tests performed between 2020 and 2023, 934 were reactive. A total of 332 retests and 65 patients without HCV-ribonucleic acid (RNA) analysis were excluded. Demographic data were calculated for 537 patients, and 130 patients were included in the study.</p><p><strong>Results: </strong>The average age of 537 patients was 55±18 years, and 57.1% were women. The anti-HCV positivity rate was 0.62% (602/96,515), and the actual anti-HCV positivity rate was 0.13% (130/96,515). Anti-HCV levels were higher in HCV-RNA(+) patients than in HCV-RNA-negative individuals (p<0.0001) (Table 1). Receiver operating characteristic curve analysis identified the optimal S/Co value to be 10.86 to identify true positive cases. Sensitivity was 96.1%, specificity was 61.2%, positive predictive value (PPV) was 44.2%, and negative predictive value (NPV) was 98% (Figure 2). A total of 107 (82.3%) of the patients were identified as GT1, and the most common subtype was GT1b (n=100).</p><p><strong>Conclusion: </strong>If anti-HCV S/Co is ≥10.86, direct HCV RNA testing may be recommended; However, the possibility of false positivity should be considered in patients with a S/Co value below 10.86.</p>","PeriodicalId":94194,"journal":{"name":"Revista da Associacao Medica Brasileira (1992)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370746/pdf/","citationCount":"0","resultStr":"{\"title\":\"The usefulness of anti-HCV signal to cut-off ratio in predicting hepatitis C viremia and the effect of genotype differences on signal to cut-off ratio.\",\"authors\":\"Burak Sarıkaya, İrem Demiralp Yatar, Soner Yılmaz, Yasin Tiryaki, Vahibe Aydın Sarıkaya, Rıza Aytaç Çetinkaya, Duygu Kırkık\",\"doi\":\"10.1590/1806-9282.20240370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>In the hepatitis C virus (HCV) diagnostic algorithm, an anti-HCV screening test is recommended first. In countries with low HCV prevalence, anti-HCV testing can often give false-positive results. This may lead to unnecessary retesting, increased costs, and psychological stress for patients.</p><p><strong>Methods: </strong>In this study, the most appropriate S/Co (signal-cutoff) value to predict HCV viremia in anti-HCV test(+) individuals was determined, and the effect of genotype differences was evaluated. Of the 96,515 anti-HCV tests performed between 2020 and 2023, 934 were reactive. A total of 332 retests and 65 patients without HCV-ribonucleic acid (RNA) analysis were excluded. Demographic data were calculated for 537 patients, and 130 patients were included in the study.</p><p><strong>Results: </strong>The average age of 537 patients was 55±18 years, and 57.1% were women. The anti-HCV positivity rate was 0.62% (602/96,515), and the actual anti-HCV positivity rate was 0.13% (130/96,515). Anti-HCV levels were higher in HCV-RNA(+) patients than in HCV-RNA-negative individuals (p<0.0001) (Table 1). Receiver operating characteristic curve analysis identified the optimal S/Co value to be 10.86 to identify true positive cases. Sensitivity was 96.1%, specificity was 61.2%, positive predictive value (PPV) was 44.2%, and negative predictive value (NPV) was 98% (Figure 2). A total of 107 (82.3%) of the patients were identified as GT1, and the most common subtype was GT1b (n=100).</p><p><strong>Conclusion: </strong>If anti-HCV S/Co is ≥10.86, direct HCV RNA testing may be recommended; However, the possibility of false positivity should be considered in patients with a S/Co value below 10.86.</p>\",\"PeriodicalId\":94194,\"journal\":{\"name\":\"Revista da Associacao Medica Brasileira (1992)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista da Associacao Medica Brasileira (1992)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1806-9282.20240370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista da Associacao Medica Brasileira (1992)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9282.20240370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The usefulness of anti-HCV signal to cut-off ratio in predicting hepatitis C viremia and the effect of genotype differences on signal to cut-off ratio.
Objective: In the hepatitis C virus (HCV) diagnostic algorithm, an anti-HCV screening test is recommended first. In countries with low HCV prevalence, anti-HCV testing can often give false-positive results. This may lead to unnecessary retesting, increased costs, and psychological stress for patients.
Methods: In this study, the most appropriate S/Co (signal-cutoff) value to predict HCV viremia in anti-HCV test(+) individuals was determined, and the effect of genotype differences was evaluated. Of the 96,515 anti-HCV tests performed between 2020 and 2023, 934 were reactive. A total of 332 retests and 65 patients without HCV-ribonucleic acid (RNA) analysis were excluded. Demographic data were calculated for 537 patients, and 130 patients were included in the study.
Results: The average age of 537 patients was 55±18 years, and 57.1% were women. The anti-HCV positivity rate was 0.62% (602/96,515), and the actual anti-HCV positivity rate was 0.13% (130/96,515). Anti-HCV levels were higher in HCV-RNA(+) patients than in HCV-RNA-negative individuals (p<0.0001) (Table 1). Receiver operating characteristic curve analysis identified the optimal S/Co value to be 10.86 to identify true positive cases. Sensitivity was 96.1%, specificity was 61.2%, positive predictive value (PPV) was 44.2%, and negative predictive value (NPV) was 98% (Figure 2). A total of 107 (82.3%) of the patients were identified as GT1, and the most common subtype was GT1b (n=100).
Conclusion: If anti-HCV S/Co is ≥10.86, direct HCV RNA testing may be recommended; However, the possibility of false positivity should be considered in patients with a S/Co value below 10.86.