解离性癫痫发作对大脑的影响。

IF 3.4 2区 医学 Q2 NEUROIMAGING
S.G. Mueller , N. Garga , P. Garcia , S. Rossi , A. Vu , T. Neylan , K.D. Laxer
{"title":"解离性癫痫发作对大脑的影响。","authors":"S.G. Mueller ,&nbsp;N. Garga ,&nbsp;P. Garcia ,&nbsp;S. Rossi ,&nbsp;A. Vu ,&nbsp;T. Neylan ,&nbsp;K.D. Laxer","doi":"10.1016/j.nicl.2024.103664","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Increased resting state functional connectivity between regions involved in emotion control with regions with other specializations, e.g. motor control (emotional hyperconnectivity) is one of the most consistent imaging findings in persons suffering from dissociative seizures (DS). The overall goal of this study was to better characterize DS-related emotional hyperconnectivity using dynamic resting state analysis combined with brainstem volumetry to investigate 1. If emotional hyperconnectivity is restricted to a single state. 2. How volume losses within the modulatory and emotional motor subnetworks of the neuromodulatory system influence the expression of the emotional hyperconnectivity.</p></div><div><h3>Methods</h3><p>13 persons with dissociative seizures (PDS) (f/m:10/3, mean age (SD) 44.6 (11.5)) and 15 controls (CON) (f/m:10/5, mean age (SD) 41.7 (13.0)) underwent a mental health test battery and structural and functional imaging at 3 T. Deformation based morphometry was used to assess brain volume loss by extracting the mean Jacobian determinants from 457 brain, forebrain and brainstem structures. The bold signals from 445 brainstem and brain rois were extracted with CONN and a dynamic fMRI analysis combined with graph and hierarchical analysis was used to identify and characterize 9 different brain states. Welch’s t tests and Kendall tau tests were used for group comparisons and correlation analyses.</p></div><div><h3>Results</h3><p>The duration of Brain state 6 was longer in PDS than in CON (93.1(88.3) vs. 23.4(31.2), p = 0.01) and positively correlated with higher degrees of somatization, depression, PTSD severity and dissociation. Its global connectivity was higher in PDS than CON (90.4(3.2) vs 86.5(4.2) p = 0.01) which was caused by an increased connectivity between regions involved in emotion control and regions involved in sense of agency/body control. The brainstem and brainstem-forebrain modulatory and emotional motor subnetworks of the neuromodulatory system were atrophied in PDS. Atrophy severity within the brainstem-forebrain subnetworks was correlated with state 6 dwell time (modulatory: tau = -0.295, p = 0.03; emotional motor: tau = -0.343, p = 0.015) and atrophy severity within the brainstem subnetwork with somatization severity (modulatory: tau = -0.25, p = 0.036; emotional motor: tau = -0.256, p = 0.033).</p></div><div><h3>Conclusion</h3><p>DS-related emotional hyperconnectivity was restricted to state 6 episodes. The remaining states were not different between PDS and CON. The modulatory subnetwork synchronizes brain activity across brain regions. Atrophy and dysfunction within that subnetwork could facilitate the abnormal interaction between regions involved in emotion control with those controlling sense of agency/body ownership during state 6 and contribute to the tendency for somatization in PDS. The emotional motor subnetwork controls the activity of spinal motoneurons. Atrophy and dysfunction within this subnetwork could impair that control resulting in motor symptoms during DS. Taken together, these findings indicate that DS have a neurophysiological underpinning.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224001037/pdfft?md5=3d2b8299a1666eeb9271113c659b2ac7&pid=1-s2.0-S2213158224001037-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The imprint of dissociative seizures on the brain\",\"authors\":\"S.G. Mueller ,&nbsp;N. Garga ,&nbsp;P. Garcia ,&nbsp;S. Rossi ,&nbsp;A. Vu ,&nbsp;T. Neylan ,&nbsp;K.D. Laxer\",\"doi\":\"10.1016/j.nicl.2024.103664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Increased resting state functional connectivity between regions involved in emotion control with regions with other specializations, e.g. motor control (emotional hyperconnectivity) is one of the most consistent imaging findings in persons suffering from dissociative seizures (DS). The overall goal of this study was to better characterize DS-related emotional hyperconnectivity using dynamic resting state analysis combined with brainstem volumetry to investigate 1. If emotional hyperconnectivity is restricted to a single state. 2. How volume losses within the modulatory and emotional motor subnetworks of the neuromodulatory system influence the expression of the emotional hyperconnectivity.</p></div><div><h3>Methods</h3><p>13 persons with dissociative seizures (PDS) (f/m:10/3, mean age (SD) 44.6 (11.5)) and 15 controls (CON) (f/m:10/5, mean age (SD) 41.7 (13.0)) underwent a mental health test battery and structural and functional imaging at 3 T. Deformation based morphometry was used to assess brain volume loss by extracting the mean Jacobian determinants from 457 brain, forebrain and brainstem structures. The bold signals from 445 brainstem and brain rois were extracted with CONN and a dynamic fMRI analysis combined with graph and hierarchical analysis was used to identify and characterize 9 different brain states. Welch’s t tests and Kendall tau tests were used for group comparisons and correlation analyses.</p></div><div><h3>Results</h3><p>The duration of Brain state 6 was longer in PDS than in CON (93.1(88.3) vs. 23.4(31.2), p = 0.01) and positively correlated with higher degrees of somatization, depression, PTSD severity and dissociation. Its global connectivity was higher in PDS than CON (90.4(3.2) vs 86.5(4.2) p = 0.01) which was caused by an increased connectivity between regions involved in emotion control and regions involved in sense of agency/body control. The brainstem and brainstem-forebrain modulatory and emotional motor subnetworks of the neuromodulatory system were atrophied in PDS. Atrophy severity within the brainstem-forebrain subnetworks was correlated with state 6 dwell time (modulatory: tau = -0.295, p = 0.03; emotional motor: tau = -0.343, p = 0.015) and atrophy severity within the brainstem subnetwork with somatization severity (modulatory: tau = -0.25, p = 0.036; emotional motor: tau = -0.256, p = 0.033).</p></div><div><h3>Conclusion</h3><p>DS-related emotional hyperconnectivity was restricted to state 6 episodes. The remaining states were not different between PDS and CON. The modulatory subnetwork synchronizes brain activity across brain regions. Atrophy and dysfunction within that subnetwork could facilitate the abnormal interaction between regions involved in emotion control with those controlling sense of agency/body ownership during state 6 and contribute to the tendency for somatization in PDS. The emotional motor subnetwork controls the activity of spinal motoneurons. Atrophy and dysfunction within this subnetwork could impair that control resulting in motor symptoms during DS. Taken together, these findings indicate that DS have a neurophysiological underpinning.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224001037/pdfft?md5=3d2b8299a1666eeb9271113c659b2ac7&pid=1-s2.0-S2213158224001037-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224001037\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224001037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:在解离性癫痫发作(DS)患者中,情绪控制区域与其他专业区域(如运动控制)之间的静息态功能连通性增加(情绪超连通性)是最一致的成像发现之一。本研究的总体目标是利用动态静息态分析结合脑干容积测量法,更好地描述与解离性癫痫发作相关的情绪超连接性,以研究 1.情感过度连接是否仅限于单一状态。2.2. 神经调节系统的调节子网和情感运动子网内的容量损失如何影响情感超连接性的表达。方法:13 名解离性癫痫发作患者(PDS)(女/男:10/3,平均年龄(SD)44.6(11.5))和 15 名对照组(CON)(女/男:10/5,平均年龄(SD)41.通过提取 457 个大脑、前脑和脑干结构的平均雅各布行列式来评估脑容量损失。利用 CONN 提取了 445 个脑干和脑喙突的粗体信号,并结合图形和层次分析法进行了动态 fMRI 分析,以识别和描述 9 种不同的大脑状态。Welch's t 检验和 Kendall tau 检验用于组间比较和相关性分析:结果:PDS 患者脑状态 6 的持续时间比 CON 患者长(93.1(88.3) vs. 23.4(31.2),p = 0.01),并且与较高程度的躯体化、抑郁、创伤后应激障碍严重性和解离呈正相关。创伤后应激障碍患者的全局连通性高于创伤后应激障碍患者(90.4(3.2) vs 86.5(4.2) p = 0.01),这是由于情绪控制区域和机构感/身体控制区域之间的连通性增加所致。神经调节系统的脑干和脑干-前脑调节子网以及情绪运动子网在PDS中出现萎缩。脑干-前脑子网络的萎缩严重程度与状态6停留时间相关(调节:tau = -0.295,p = 0.03;情感运动:tau = -0.343,p = 0.015),脑干子网络的萎缩严重程度与躯体化严重程度相关(调节:tau = -0.25,p = 0.036;情感运动:tau = -0.256,p = 0.033):结论:与 DS 相关的情绪超连接性仅限于状态 6 的发作。结论:与 DS 相关的情绪超连接仅限于状态 6 的发作,其余状态在 PDS 和 CON 之间没有差异。调节子网络使大脑各区域的活动同步。该子网的萎缩和功能障碍可能会促进参与情绪控制的区域与控制代理感/身体所有权的区域在状态6期间的异常互动,并导致PDS的躯体化倾向。情绪运动亚网络控制着脊髓运动神经元的活动。该子网的萎缩和功能障碍可能会损害这种控制,从而导致 DS 期的运动症状。综上所述,这些发现表明 DS 有其神经生理学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The imprint of dissociative seizures on the brain

Background

Increased resting state functional connectivity between regions involved in emotion control with regions with other specializations, e.g. motor control (emotional hyperconnectivity) is one of the most consistent imaging findings in persons suffering from dissociative seizures (DS). The overall goal of this study was to better characterize DS-related emotional hyperconnectivity using dynamic resting state analysis combined with brainstem volumetry to investigate 1. If emotional hyperconnectivity is restricted to a single state. 2. How volume losses within the modulatory and emotional motor subnetworks of the neuromodulatory system influence the expression of the emotional hyperconnectivity.

Methods

13 persons with dissociative seizures (PDS) (f/m:10/3, mean age (SD) 44.6 (11.5)) and 15 controls (CON) (f/m:10/5, mean age (SD) 41.7 (13.0)) underwent a mental health test battery and structural and functional imaging at 3 T. Deformation based morphometry was used to assess brain volume loss by extracting the mean Jacobian determinants from 457 brain, forebrain and brainstem structures. The bold signals from 445 brainstem and brain rois were extracted with CONN and a dynamic fMRI analysis combined with graph and hierarchical analysis was used to identify and characterize 9 different brain states. Welch’s t tests and Kendall tau tests were used for group comparisons and correlation analyses.

Results

The duration of Brain state 6 was longer in PDS than in CON (93.1(88.3) vs. 23.4(31.2), p = 0.01) and positively correlated with higher degrees of somatization, depression, PTSD severity and dissociation. Its global connectivity was higher in PDS than CON (90.4(3.2) vs 86.5(4.2) p = 0.01) which was caused by an increased connectivity between regions involved in emotion control and regions involved in sense of agency/body control. The brainstem and brainstem-forebrain modulatory and emotional motor subnetworks of the neuromodulatory system were atrophied in PDS. Atrophy severity within the brainstem-forebrain subnetworks was correlated with state 6 dwell time (modulatory: tau = -0.295, p = 0.03; emotional motor: tau = -0.343, p = 0.015) and atrophy severity within the brainstem subnetwork with somatization severity (modulatory: tau = -0.25, p = 0.036; emotional motor: tau = -0.256, p = 0.033).

Conclusion

DS-related emotional hyperconnectivity was restricted to state 6 episodes. The remaining states were not different between PDS and CON. The modulatory subnetwork synchronizes brain activity across brain regions. Atrophy and dysfunction within that subnetwork could facilitate the abnormal interaction between regions involved in emotion control with those controlling sense of agency/body ownership during state 6 and contribute to the tendency for somatization in PDS. The emotional motor subnetwork controls the activity of spinal motoneurons. Atrophy and dysfunction within this subnetwork could impair that control resulting in motor symptoms during DS. Taken together, these findings indicate that DS have a neurophysiological underpinning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimage-Clinical
Neuroimage-Clinical NEUROIMAGING-
CiteScore
7.50
自引率
4.80%
发文量
368
审稿时长
52 days
期刊介绍: NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging. The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信