M Kaur, A Diallo, B LeBlanc, J Segado-Fernandez, E Viezzer, R B Huxford, A Mancini, D J Cruz-Zabala, M Podesta, J W Berkery, M Garcia-Muñoz
{"title":"为小长径比托卡马克(SMART)设计汤姆逊散射诊断仪。","authors":"M Kaur, A Diallo, B LeBlanc, J Segado-Fernandez, E Viezzer, R B Huxford, A Mancini, D J Cruz-Zabala, M Podesta, J W Berkery, M Garcia-Muñoz","doi":"10.1063/5.0219308","DOIUrl":null,"url":null,"abstract":"<p><p>We describe the design of a Thomson scattering (TS) diagnostic to be used on the SMall Aspect Ratio Tokamak (SMART). SMART is a spherical tokamak being commissioned in Spain that aims to explore positive triangularity and negative triangularity plasma scenarios at a low aspect ratio. The SMART TS diagnostic is designed to operate at high spatial resolution, 6 mm scattering length in the low-field side and 9 mm in the high-field side regions, and a wide dynamic range, electron temperature from 1 eV to 1 keV and density from 5×1018m-3 to 1×1020m-3, to resolve large gradients formed at the plasma edge and in the scrape-off layer (SOL) under different triangularities and low aspect ratios. A 2 J @1064 nm laser will be used that is capable of operating in the burst mode at 1, 2, and 4 kHz to investigate fast phenomena and at 30 Hz to study 1 s (or more) long discharges. The scattered light will be collected over an angular range of 60° - 120° from 28 spatial points in the midplane covering the entire plasma width and the outer midplane SOL. Each scattering signal will be spectrally resolved on five wavelength channels of a polychromator to obtain the electron temperature measurement. We will also present a method to monitor in situ laser alignment in the core during calibrations and plasma operations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Thomson scattering diagnostic for the SMall Aspect Ratio Tokamak (SMART).\",\"authors\":\"M Kaur, A Diallo, B LeBlanc, J Segado-Fernandez, E Viezzer, R B Huxford, A Mancini, D J Cruz-Zabala, M Podesta, J W Berkery, M Garcia-Muñoz\",\"doi\":\"10.1063/5.0219308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe the design of a Thomson scattering (TS) diagnostic to be used on the SMall Aspect Ratio Tokamak (SMART). SMART is a spherical tokamak being commissioned in Spain that aims to explore positive triangularity and negative triangularity plasma scenarios at a low aspect ratio. The SMART TS diagnostic is designed to operate at high spatial resolution, 6 mm scattering length in the low-field side and 9 mm in the high-field side regions, and a wide dynamic range, electron temperature from 1 eV to 1 keV and density from 5×1018m-3 to 1×1020m-3, to resolve large gradients formed at the plasma edge and in the scrape-off layer (SOL) under different triangularities and low aspect ratios. A 2 J @1064 nm laser will be used that is capable of operating in the burst mode at 1, 2, and 4 kHz to investigate fast phenomena and at 30 Hz to study 1 s (or more) long discharges. The scattered light will be collected over an angular range of 60° - 120° from 28 spatial points in the midplane covering the entire plasma width and the outer midplane SOL. Each scattering signal will be spectrally resolved on five wavelength channels of a polychromator to obtain the electron temperature measurement. We will also present a method to monitor in situ laser alignment in the core during calibrations and plasma operations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219308\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of a Thomson scattering diagnostic for the SMall Aspect Ratio Tokamak (SMART).
We describe the design of a Thomson scattering (TS) diagnostic to be used on the SMall Aspect Ratio Tokamak (SMART). SMART is a spherical tokamak being commissioned in Spain that aims to explore positive triangularity and negative triangularity plasma scenarios at a low aspect ratio. The SMART TS diagnostic is designed to operate at high spatial resolution, 6 mm scattering length in the low-field side and 9 mm in the high-field side regions, and a wide dynamic range, electron temperature from 1 eV to 1 keV and density from 5×1018m-3 to 1×1020m-3, to resolve large gradients formed at the plasma edge and in the scrape-off layer (SOL) under different triangularities and low aspect ratios. A 2 J @1064 nm laser will be used that is capable of operating in the burst mode at 1, 2, and 4 kHz to investigate fast phenomena and at 30 Hz to study 1 s (or more) long discharges. The scattered light will be collected over an angular range of 60° - 120° from 28 spatial points in the midplane covering the entire plasma width and the outer midplane SOL. Each scattering signal will be spectrally resolved on five wavelength channels of a polychromator to obtain the electron temperature measurement. We will also present a method to monitor in situ laser alignment in the core during calibrations and plasma operations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.