耐卤蓝藻 Halothece sp.PCC7418。

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sasiprapa Samsri, Chananwat Kortheerakul, Hakuto Kageyama, Rungaroon Waditee-Sirisattha
{"title":"耐卤蓝藻 Halothece sp.PCC7418。","authors":"Sasiprapa Samsri, Chananwat Kortheerakul, Hakuto Kageyama, Rungaroon Waditee-Sirisattha","doi":"10.1093/jambio/lxae230","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis.</p><p><strong>Methods and results: </strong>Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress.</p><p><strong>Conclusion: </strong>Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and biochemical characterization of a plant-like iota-class glutathione S-transferase from the halotolerant cyanobacterium Halothece sp. PCC7418.\",\"authors\":\"Sasiprapa Samsri, Chananwat Kortheerakul, Hakuto Kageyama, Rungaroon Waditee-Sirisattha\",\"doi\":\"10.1093/jambio/lxae230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis.</p><p><strong>Methods and results: </strong>Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress.</p><p><strong>Conclusion: </strong>Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae230\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae230","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究通过基因组、系统发育、生物信息学、功能表征和 RNA 测序分析,鉴定了一种独特的嗜极性谷胱甘肽 S-转移酶(GST):方法:在 Halothece sp.PCC7418。系统发育分析表明,H0647、H1478、H0729、H3557 和 H3594 是不同的 GST 类别。其中,H0729 被归类为 iota 级 GST,它编码的高分子量 GST 蛋白具有显著特征。H0729 的蛋白质二级结构显示存在一个谷胱甘肽(Grx)Cys-Pro-Tyr-Cys(C-P-Y-C)基团,该基团与 N 端结构域重叠,其拓扑结构类似于硫代毒素(Trx)的折叠。有趣的是,重组 H0729 对谷胱甘肽(GSH)和 1-氯-2,4-二硝基苯(CDNB)都表现出很高的催化效率,与重组 H3557 相比,催化效率分别高出 155 倍和 32 倍。最后,Halothece 基因表达谱表明,抗氧化和第二阶段解毒编码基因在应对盐胁迫时至关重要:结论:在蓝藻中发现了 Iota 级 GST。结论:在蓝藻中发现了 Iota 类 GST,这种 GST 对异生物底物具有很高的催化效率。我们的发现揭示了蓝藻中 GST 的多样化进化,并提供了非生物胁迫下编码酶抗氧化和解毒系统基因的功能动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular and biochemical characterization of a plant-like iota-class glutathione S-transferase from the halotolerant cyanobacterium Halothece sp. PCC7418.

Aims: This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis.

Methods and results: Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress.

Conclusion: Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信