Lauren E Gyllenhammer, Vincent Zaegel, Allison M Duensing, Manoel E Lixandrao, Dana Dabelea, Bryan C Bergman, Kristen E Boyle
{"title":"婴儿间充质干细胞的脂质组学与母体环境和儿童脂肪相关。","authors":"Lauren E Gyllenhammer, Vincent Zaegel, Allison M Duensing, Manoel E Lixandrao, Dana Dabelea, Bryan C Bergman, Kristen E Boyle","doi":"10.1172/jci.insight.180016","DOIUrl":null,"url":null,"abstract":"<p><p>Our objective was to interrogate mesenchymal stem cell (MSC) lipid metabolism and gestational exposures beyond maternal body mass that may contribute to child obesity risk. MSCs were cultured from term infants of mothers with obesity (n = 16) or normal weight (n = 15). In MSCs undergoing myogenesis in vitro, we used lipidomics to distinguish phenotypes by unbiased cluster analysis and lipid challenge (24-hour excess fatty acid [24hFA]). We measured MSC AMP-activated protein kinase (AMPK) activity and fatty acid oxidation (FAO), and a composite index of maternal glucose, insulin, triglycerides, free fatty acids, TNF-α, and high-density lipoprotein and total cholesterol in fasting blood from mid and late gestation (~17 and ~27 weeks, respectively). We measured child adiposity at birth (n = 29), 4-6 months (n = 29), and 4-6 years (n = 13). Three MSC clusters were distinguished by triacylglycerol (TAG) stores, with greatest TAGs in Cluster 2. All clusters increased acylcarnitines and TAGs with 24hFA, although Cluster 2 was more pronounced and corresponded to AMPK activation and FAO. Maternal metabolic markers predicted MSC clusters and child adiposity at 4-6 years (both highest in Cluster 3). Our data support the notion that MSC phenotypes are predicted by comprehensive maternal metabolic milieu exposures, independent of maternal BMI, and suggest utility as an at-birth predictor for child adiposity, although validation with larger longitudinal samples is warranted.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipidomics of infant mesenchymal stem cells associate with the maternal milieu and child adiposity.\",\"authors\":\"Lauren E Gyllenhammer, Vincent Zaegel, Allison M Duensing, Manoel E Lixandrao, Dana Dabelea, Bryan C Bergman, Kristen E Boyle\",\"doi\":\"10.1172/jci.insight.180016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our objective was to interrogate mesenchymal stem cell (MSC) lipid metabolism and gestational exposures beyond maternal body mass that may contribute to child obesity risk. MSCs were cultured from term infants of mothers with obesity (n = 16) or normal weight (n = 15). In MSCs undergoing myogenesis in vitro, we used lipidomics to distinguish phenotypes by unbiased cluster analysis and lipid challenge (24-hour excess fatty acid [24hFA]). We measured MSC AMP-activated protein kinase (AMPK) activity and fatty acid oxidation (FAO), and a composite index of maternal glucose, insulin, triglycerides, free fatty acids, TNF-α, and high-density lipoprotein and total cholesterol in fasting blood from mid and late gestation (~17 and ~27 weeks, respectively). We measured child adiposity at birth (n = 29), 4-6 months (n = 29), and 4-6 years (n = 13). Three MSC clusters were distinguished by triacylglycerol (TAG) stores, with greatest TAGs in Cluster 2. All clusters increased acylcarnitines and TAGs with 24hFA, although Cluster 2 was more pronounced and corresponded to AMPK activation and FAO. Maternal metabolic markers predicted MSC clusters and child adiposity at 4-6 years (both highest in Cluster 3). Our data support the notion that MSC phenotypes are predicted by comprehensive maternal metabolic milieu exposures, independent of maternal BMI, and suggest utility as an at-birth predictor for child adiposity, although validation with larger longitudinal samples is warranted.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.180016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.180016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Lipidomics of infant mesenchymal stem cells associate with the maternal milieu and child adiposity.
Our objective was to interrogate mesenchymal stem cell (MSC) lipid metabolism and gestational exposures beyond maternal body mass that may contribute to child obesity risk. MSCs were cultured from term infants of mothers with obesity (n = 16) or normal weight (n = 15). In MSCs undergoing myogenesis in vitro, we used lipidomics to distinguish phenotypes by unbiased cluster analysis and lipid challenge (24-hour excess fatty acid [24hFA]). We measured MSC AMP-activated protein kinase (AMPK) activity and fatty acid oxidation (FAO), and a composite index of maternal glucose, insulin, triglycerides, free fatty acids, TNF-α, and high-density lipoprotein and total cholesterol in fasting blood from mid and late gestation (~17 and ~27 weeks, respectively). We measured child adiposity at birth (n = 29), 4-6 months (n = 29), and 4-6 years (n = 13). Three MSC clusters were distinguished by triacylglycerol (TAG) stores, with greatest TAGs in Cluster 2. All clusters increased acylcarnitines and TAGs with 24hFA, although Cluster 2 was more pronounced and corresponded to AMPK activation and FAO. Maternal metabolic markers predicted MSC clusters and child adiposity at 4-6 years (both highest in Cluster 3). Our data support the notion that MSC phenotypes are predicted by comprehensive maternal metabolic milieu exposures, independent of maternal BMI, and suggest utility as an at-birth predictor for child adiposity, although validation with larger longitudinal samples is warranted.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.