{"title":"通过 miR-126-5p/TRAF6 轴抑制 FOXO3 可改善罗哌卡因诱导的神经细胞损伤。","authors":"Song Peng, Yuzeng Xu, Xiao Lin","doi":"10.1007/s11626-024-00970-8","DOIUrl":null,"url":null,"abstract":"<p><p>Local anesthetics, such as ropivacaine (Ropi), are toxic to nerve cells. We aimed to explore the role of forkhead box O3 (FOXO3) in Ropi-induced nerve injury to provide a theoretical basis for reducing the anesthetic neurotoxicity. SK-N-SH cells were cultured and treated with different concentrations of Ropi. Cell viability, apoptosis, cytotoxicity (LDH/ROS/SOD), and levels of FOXO3, miR-126-5p, and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected. The enrichment of FOXO3 on the miR-126-5p promoter was analyzed. The binding relationships among FOXO3, miR-126-5p promoter sequence, and TRAF6 3'UTR sequence were verified. Combined experiments detected the regulatory role of FOXO3/miR-126-5p/TRAF6 in Ropi-induced nerve injury. FOXO3 was upregulated in Ropi-induced nerve cell damage. Inhibition of FOXO3 ameliorated Ropi-induced decreased cell viability, and increased apoptosis and cytotoxicity. FOXO3 bound to the miR-126-5p promoter and inhibited its expression, thereby counteracting miR-126-5p-induced repression. miR-126-5p inhibition and TRAF6 overexpression partially reversed the alleviative effect of FOXO3 inhibition on Ropi-induced nerve cell damage. In conclusion, FOXO3 aggravated the neurotoxicity of Ropi through miR-126-5p downregulation and TRAF6 upregulation, suggesting that FOXO3 inhibitor could be an adjuvant agent for local anesthetics, to alleviate local anesthetics-induced neurotoxicity.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1109-1120"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of FOXO3 ameliorates ropivacaine-induced nerve cell damage through the miR-126-5p/TRAF6 axis.\",\"authors\":\"Song Peng, Yuzeng Xu, Xiao Lin\",\"doi\":\"10.1007/s11626-024-00970-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local anesthetics, such as ropivacaine (Ropi), are toxic to nerve cells. We aimed to explore the role of forkhead box O3 (FOXO3) in Ropi-induced nerve injury to provide a theoretical basis for reducing the anesthetic neurotoxicity. SK-N-SH cells were cultured and treated with different concentrations of Ropi. Cell viability, apoptosis, cytotoxicity (LDH/ROS/SOD), and levels of FOXO3, miR-126-5p, and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected. The enrichment of FOXO3 on the miR-126-5p promoter was analyzed. The binding relationships among FOXO3, miR-126-5p promoter sequence, and TRAF6 3'UTR sequence were verified. Combined experiments detected the regulatory role of FOXO3/miR-126-5p/TRAF6 in Ropi-induced nerve injury. FOXO3 was upregulated in Ropi-induced nerve cell damage. Inhibition of FOXO3 ameliorated Ropi-induced decreased cell viability, and increased apoptosis and cytotoxicity. FOXO3 bound to the miR-126-5p promoter and inhibited its expression, thereby counteracting miR-126-5p-induced repression. miR-126-5p inhibition and TRAF6 overexpression partially reversed the alleviative effect of FOXO3 inhibition on Ropi-induced nerve cell damage. In conclusion, FOXO3 aggravated the neurotoxicity of Ropi through miR-126-5p downregulation and TRAF6 upregulation, suggesting that FOXO3 inhibitor could be an adjuvant agent for local anesthetics, to alleviate local anesthetics-induced neurotoxicity.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"1109-1120\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00970-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00970-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Inhibition of FOXO3 ameliorates ropivacaine-induced nerve cell damage through the miR-126-5p/TRAF6 axis.
Local anesthetics, such as ropivacaine (Ropi), are toxic to nerve cells. We aimed to explore the role of forkhead box O3 (FOXO3) in Ropi-induced nerve injury to provide a theoretical basis for reducing the anesthetic neurotoxicity. SK-N-SH cells were cultured and treated with different concentrations of Ropi. Cell viability, apoptosis, cytotoxicity (LDH/ROS/SOD), and levels of FOXO3, miR-126-5p, and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected. The enrichment of FOXO3 on the miR-126-5p promoter was analyzed. The binding relationships among FOXO3, miR-126-5p promoter sequence, and TRAF6 3'UTR sequence were verified. Combined experiments detected the regulatory role of FOXO3/miR-126-5p/TRAF6 in Ropi-induced nerve injury. FOXO3 was upregulated in Ropi-induced nerve cell damage. Inhibition of FOXO3 ameliorated Ropi-induced decreased cell viability, and increased apoptosis and cytotoxicity. FOXO3 bound to the miR-126-5p promoter and inhibited its expression, thereby counteracting miR-126-5p-induced repression. miR-126-5p inhibition and TRAF6 overexpression partially reversed the alleviative effect of FOXO3 inhibition on Ropi-induced nerve cell damage. In conclusion, FOXO3 aggravated the neurotoxicity of Ropi through miR-126-5p downregulation and TRAF6 upregulation, suggesting that FOXO3 inhibitor could be an adjuvant agent for local anesthetics, to alleviate local anesthetics-induced neurotoxicity.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.