{"title":"甲状腺激素受体是癌症中的肿瘤抑制因子","authors":"Xuguang Zhu, Sheue-Yann Cheng","doi":"10.1210/endocr/bqae115","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRβ, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor β. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thyroid Hormone Receptors as Tumor Suppressors in Cancer.\",\"authors\":\"Xuguang Zhu, Sheue-Yann Cheng\",\"doi\":\"10.1210/endocr/bqae115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRβ, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor β. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae115\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Thyroid Hormone Receptors as Tumor Suppressors in Cancer.
Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRβ, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor β. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.