{"title":"深度学习模型诊断上颌真菌球鼻炎的准确性。","authors":"Pakapoom Sukswai, Narit Hnoohom, Minh Phuoc Hoang, Songklot Aeumjaturapat, Supinda Chusakul, Jesada Kanjanaumporn, Kachorn Seresirikachorn, Kornkiat Snidvongs","doi":"10.1007/s00405-024-08948-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess the accuracy of deep learning models for the diagnosis of maxillary fungal ball rhinosinusitis (MFB) and to compare the accuracy, sensitivity, specificity, precision, and F1-score with a rhinologist.</p><p><strong>Methods: </strong>Data from 1539 adult chronic rhinosinusitis (CRS) patients who underwent paranasal sinus computed tomography (CT) were collected. The overall dataset consisted of 254 MFB cases and 1285 non-MFB cases. The CT images were constructed and labeled to form the deep learning models. Seventy percent of the images were used for training the deep-learning models, and 30% were used for testing. Whole image analysis and instance segmentation analysis were performed using three different architectures: MobileNetv3, ResNet50, and ResNet101 for whole image analysis, and YOLOv5X-SEG, YOLOv8X-SEG, and YOLOv9-C-SEG for instance segmentation analysis. The ROC curve was assessed. Accuracy, sensitivity (recall), specificity, precision, and F1-score were compared between the models and a rhinologist. Kappa agreement was evaluated.</p><p><strong>Results: </strong>Whole image analysis showed lower precision, recall, and F1-score compared to instance segmentation. The models exhibited an area under the ROC curve of 0.86 for whole image analysis and 0.88 for instance segmentation. In the testing dataset for whole images, the MobileNet V3 model showed 81.00% accuracy, 47.40% sensitivity, 87.90% specificity, 66.80% precision, and a 67.20% F1 score. Instance segmentation yielded the best evaluation with YOLOv8X-SEG showing 94.10% accuracy, 85.90% sensitivity, 95.80% specificity, 88.90% precision, and an 89.80% F1-score. The rhinologist achieved 93.5% accuracy, 84.6% sensitivity, 95.3% specificity, 78.6% precision, and an 81.5% F1-score.</p><p><strong>Conclusion: </strong>Utilizing paranasal sinus CT imaging with enhanced localization and constructive instance segmentation in deep learning models can be the practical promising deep learning system in assisting physicians for diagnosing maxillary fungal ball.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":" ","pages":"6485-6492"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The accuracy of deep learning models for diagnosing maxillary fungal ball rhinosinusitis.\",\"authors\":\"Pakapoom Sukswai, Narit Hnoohom, Minh Phuoc Hoang, Songklot Aeumjaturapat, Supinda Chusakul, Jesada Kanjanaumporn, Kachorn Seresirikachorn, Kornkiat Snidvongs\",\"doi\":\"10.1007/s00405-024-08948-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To assess the accuracy of deep learning models for the diagnosis of maxillary fungal ball rhinosinusitis (MFB) and to compare the accuracy, sensitivity, specificity, precision, and F1-score with a rhinologist.</p><p><strong>Methods: </strong>Data from 1539 adult chronic rhinosinusitis (CRS) patients who underwent paranasal sinus computed tomography (CT) were collected. The overall dataset consisted of 254 MFB cases and 1285 non-MFB cases. The CT images were constructed and labeled to form the deep learning models. Seventy percent of the images were used for training the deep-learning models, and 30% were used for testing. Whole image analysis and instance segmentation analysis were performed using three different architectures: MobileNetv3, ResNet50, and ResNet101 for whole image analysis, and YOLOv5X-SEG, YOLOv8X-SEG, and YOLOv9-C-SEG for instance segmentation analysis. The ROC curve was assessed. Accuracy, sensitivity (recall), specificity, precision, and F1-score were compared between the models and a rhinologist. Kappa agreement was evaluated.</p><p><strong>Results: </strong>Whole image analysis showed lower precision, recall, and F1-score compared to instance segmentation. The models exhibited an area under the ROC curve of 0.86 for whole image analysis and 0.88 for instance segmentation. In the testing dataset for whole images, the MobileNet V3 model showed 81.00% accuracy, 47.40% sensitivity, 87.90% specificity, 66.80% precision, and a 67.20% F1 score. Instance segmentation yielded the best evaluation with YOLOv8X-SEG showing 94.10% accuracy, 85.90% sensitivity, 95.80% specificity, 88.90% precision, and an 89.80% F1-score. The rhinologist achieved 93.5% accuracy, 84.6% sensitivity, 95.3% specificity, 78.6% precision, and an 81.5% F1-score.</p><p><strong>Conclusion: </strong>Utilizing paranasal sinus CT imaging with enhanced localization and constructive instance segmentation in deep learning models can be the practical promising deep learning system in assisting physicians for diagnosing maxillary fungal ball.</p>\",\"PeriodicalId\":11952,\"journal\":{\"name\":\"European Archives of Oto-Rhino-Laryngology\",\"volume\":\" \",\"pages\":\"6485-6492\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Oto-Rhino-Laryngology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00405-024-08948-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00405-024-08948-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
The accuracy of deep learning models for diagnosing maxillary fungal ball rhinosinusitis.
Purpose: To assess the accuracy of deep learning models for the diagnosis of maxillary fungal ball rhinosinusitis (MFB) and to compare the accuracy, sensitivity, specificity, precision, and F1-score with a rhinologist.
Methods: Data from 1539 adult chronic rhinosinusitis (CRS) patients who underwent paranasal sinus computed tomography (CT) were collected. The overall dataset consisted of 254 MFB cases and 1285 non-MFB cases. The CT images were constructed and labeled to form the deep learning models. Seventy percent of the images were used for training the deep-learning models, and 30% were used for testing. Whole image analysis and instance segmentation analysis were performed using three different architectures: MobileNetv3, ResNet50, and ResNet101 for whole image analysis, and YOLOv5X-SEG, YOLOv8X-SEG, and YOLOv9-C-SEG for instance segmentation analysis. The ROC curve was assessed. Accuracy, sensitivity (recall), specificity, precision, and F1-score were compared between the models and a rhinologist. Kappa agreement was evaluated.
Results: Whole image analysis showed lower precision, recall, and F1-score compared to instance segmentation. The models exhibited an area under the ROC curve of 0.86 for whole image analysis and 0.88 for instance segmentation. In the testing dataset for whole images, the MobileNet V3 model showed 81.00% accuracy, 47.40% sensitivity, 87.90% specificity, 66.80% precision, and a 67.20% F1 score. Instance segmentation yielded the best evaluation with YOLOv8X-SEG showing 94.10% accuracy, 85.90% sensitivity, 95.80% specificity, 88.90% precision, and an 89.80% F1-score. The rhinologist achieved 93.5% accuracy, 84.6% sensitivity, 95.3% specificity, 78.6% precision, and an 81.5% F1-score.
Conclusion: Utilizing paranasal sinus CT imaging with enhanced localization and constructive instance segmentation in deep learning models can be the practical promising deep learning system in assisting physicians for diagnosing maxillary fungal ball.
期刊介绍:
Official Journal of
European Union of Medical Specialists – ORL Section and Board
Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery
"European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level.
European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.