Youwen Du, Linxin Pan, Wenchen Zhang, Shuangbiao Wei, Xu Fan, Na Zhang, Pengjun Wei, Xiaoqian Chen, Zhi Qiao, Li Xie
{"title":"CNDP1 通过限制 PI3K-AKT-mTOR 激活抑制肝癌细胞的恶性行为","authors":"Youwen Du, Linxin Pan, Wenchen Zhang, Shuangbiao Wei, Xu Fan, Na Zhang, Pengjun Wei, Xiaoqian Chen, Zhi Qiao, Li Xie","doi":"10.2174/0115680096332450240827070033","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is a global health problem with increasing morbidity and mortality, and exploring the diagnosis and treatment of HCC at the gene level has been a research hotspot in recent years.</p><p><strong>Methods: </strong>In this paper, a series of differentially expressed genes were found from the biochip related to HCC by bioinformatic analysis, then CNDP1 was finally selected for in-depth study according to the function and research progress of each gene. As the rate-limiting enzyme of carnosine hydrolysis, CNDP1 participates in the progress of many diseases, but its function has not been revealed in HCC. In the follow-up study, the low expression of CNDP1 in liver cancer tissues and cells was verified, then the pcDNA3.1-CNDP1 was used to improve the expression level of CNDP1 in HCC cell lines. Furthermore, this paper found that CNDP1 overexpression could significantly suppress cell prolifer-ation, migration, and invasion of HCC cell lines.</p><p><strong>Results: </strong>Mechanismly, the GeneMANIA database predicted that CNDP1 could interact with various proteins that regulate the PI3K-AKT-mTOR signaling pathway, which is overactivated in HCC. And this study showed that CNDP1 overexpression could effectively inhibit the activation of PI3K-AKT-mTOR signaling pathways, more significantly, inhibition of PI3K-AKT-mTOR signaling pathway could disrupt the anti-cancer effect of CNDP1 on HCC.</p><p><strong>Conclusion: </strong>In conclusion, we confirmed that CNDP1 was lowly expressed in HCC tissues and cells, and had potential anti-cancer activity. This discovery will lay a cytological foundation for expanding the biological function of CNDP1 and the diagnosis and treatment of HCC in the future.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNDP1 Suppresses the Malignant Behavior of Hepatoma Cell via Restricting PI3K-AKT-mTOR Activation.\",\"authors\":\"Youwen Du, Linxin Pan, Wenchen Zhang, Shuangbiao Wei, Xu Fan, Na Zhang, Pengjun Wei, Xiaoqian Chen, Zhi Qiao, Li Xie\",\"doi\":\"10.2174/0115680096332450240827070033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is a global health problem with increasing morbidity and mortality, and exploring the diagnosis and treatment of HCC at the gene level has been a research hotspot in recent years.</p><p><strong>Methods: </strong>In this paper, a series of differentially expressed genes were found from the biochip related to HCC by bioinformatic analysis, then CNDP1 was finally selected for in-depth study according to the function and research progress of each gene. As the rate-limiting enzyme of carnosine hydrolysis, CNDP1 participates in the progress of many diseases, but its function has not been revealed in HCC. In the follow-up study, the low expression of CNDP1 in liver cancer tissues and cells was verified, then the pcDNA3.1-CNDP1 was used to improve the expression level of CNDP1 in HCC cell lines. Furthermore, this paper found that CNDP1 overexpression could significantly suppress cell prolifer-ation, migration, and invasion of HCC cell lines.</p><p><strong>Results: </strong>Mechanismly, the GeneMANIA database predicted that CNDP1 could interact with various proteins that regulate the PI3K-AKT-mTOR signaling pathway, which is overactivated in HCC. And this study showed that CNDP1 overexpression could effectively inhibit the activation of PI3K-AKT-mTOR signaling pathways, more significantly, inhibition of PI3K-AKT-mTOR signaling pathway could disrupt the anti-cancer effect of CNDP1 on HCC.</p><p><strong>Conclusion: </strong>In conclusion, we confirmed that CNDP1 was lowly expressed in HCC tissues and cells, and had potential anti-cancer activity. This discovery will lay a cytological foundation for expanding the biological function of CNDP1 and the diagnosis and treatment of HCC in the future.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680096332450240827070033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096332450240827070033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
CNDP1 Suppresses the Malignant Behavior of Hepatoma Cell via Restricting PI3K-AKT-mTOR Activation.
Introduction: Hepatocellular carcinoma (HCC) is a global health problem with increasing morbidity and mortality, and exploring the diagnosis and treatment of HCC at the gene level has been a research hotspot in recent years.
Methods: In this paper, a series of differentially expressed genes were found from the biochip related to HCC by bioinformatic analysis, then CNDP1 was finally selected for in-depth study according to the function and research progress of each gene. As the rate-limiting enzyme of carnosine hydrolysis, CNDP1 participates in the progress of many diseases, but its function has not been revealed in HCC. In the follow-up study, the low expression of CNDP1 in liver cancer tissues and cells was verified, then the pcDNA3.1-CNDP1 was used to improve the expression level of CNDP1 in HCC cell lines. Furthermore, this paper found that CNDP1 overexpression could significantly suppress cell prolifer-ation, migration, and invasion of HCC cell lines.
Results: Mechanismly, the GeneMANIA database predicted that CNDP1 could interact with various proteins that regulate the PI3K-AKT-mTOR signaling pathway, which is overactivated in HCC. And this study showed that CNDP1 overexpression could effectively inhibit the activation of PI3K-AKT-mTOR signaling pathways, more significantly, inhibition of PI3K-AKT-mTOR signaling pathway could disrupt the anti-cancer effect of CNDP1 on HCC.
Conclusion: In conclusion, we confirmed that CNDP1 was lowly expressed in HCC tissues and cells, and had potential anti-cancer activity. This discovery will lay a cytological foundation for expanding the biological function of CNDP1 and the diagnosis and treatment of HCC in the future.