Kai Ye, Peng-Cheng Wang, Yan-Xin Chen, Qiao-Zhen Huang, Pan Chi
{"title":"E3泛素连接酶BTBD3通过调节TYRO3/Wnt/β-catenin信号轴抑制结直肠癌的肿瘤发生。","authors":"Kai Ye, Peng-Cheng Wang, Yan-Xin Chen, Qiao-Zhen Huang, Pan Chi","doi":"10.1186/s12935-024-03478-z","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373184/pdf/","citationCount":"0","resultStr":"{\"title\":\"E3 ubiquitin ligase BTBD3 inhibits tumorigenesis of colorectal cancer by regulating the TYRO3/Wnt/β-catenin signaling axis.\",\"authors\":\"Kai Ye, Peng-Cheng Wang, Yan-Xin Chen, Qiao-Zhen Huang, Pan Chi\",\"doi\":\"10.1186/s12935-024-03478-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03478-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03478-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
E3 ubiquitin ligase BTBD3 inhibits tumorigenesis of colorectal cancer by regulating the TYRO3/Wnt/β-catenin signaling axis.
Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/β-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/β-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/β-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/β-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated β-catenin and led to β-catenin degradation, therefore blocked the Wnt/β-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.