被生物污损沉没的塑料垃圾如何恢复浮力--底栖生物捕食的作用。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-11-20 Epub Date: 2024-09-01 DOI:10.1016/j.scitotenv.2024.175910
Javier Pinochet, Martin Thiel, Mauricio Urbina
{"title":"被生物污损沉没的塑料垃圾如何恢复浮力--底栖生物捕食的作用。","authors":"Javier Pinochet, Martin Thiel, Mauricio Urbina","doi":"10.1016/j.scitotenv.2024.175910","DOIUrl":null,"url":null,"abstract":"<p><p>Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How plastic litter sunk by biofouling recovers buoyancy - The role of benthic predation.\",\"authors\":\"Javier Pinochet, Martin Thiel, Mauricio Urbina\",\"doi\":\"10.1016/j.scitotenv.2024.175910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175910\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175910","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

据估计,丢弃在海洋中的塑料垃圾数量是漂浮在海面上的塑料垃圾数量的数倍,这引发了人们对这些海洋废弃物命运的疑问。由污垢引起的塑料垃圾下沉是造成这种质量差异的拟议机制之一。虽然部分 "失踪 "的塑料垃圾可以用污垢的影响来解释,但也有人假设,下沉的垃圾可能会在底栖生物吞噬生物污垢后返回海面。不过,这一假设从未得到验证。本研究评估了夏季和冬季底栖生物捕食时污损群落的结构和生物量。在智利中部(南纬 36°)的冬季和夏季安装了浮动聚氯乙烯板,直到不断增长的生物污损群落导致其下沉。然后将浮板移至海底,使其暴露于底栖生物的捕食,而对照浮板则放在一个网笼中,阻止捕食者进入。在夏季,所有平板都恢复了浮力,而在冬季,只有 60% 的平板恢复了浮力。在这两个季节里,所有笼子里的对照样本都保持在底部。不同处理和不同季节的群落结构各不相同,恢复浮力的平板最初以 Ulva sp.和 Ciona robusta 为主。相反,未恢复浮力的板块主要被抗捕食物种覆盖,如 Pyura chilensis、Austromegabalanus psittacus 和 Balanus laevis。因此,污损群落结构会影响捕食对浮力恢复的促进作用,因为并非所有附生生物都能被捕食者吃掉。以前的研究表明了污损生物是如何导致漂浮垃圾下沉的,而本研究则首次提供了实验证据,证明捕食可以逆转这一过程,使垃圾重新浮出水面,并再次成为本地物种和入侵物种的传播媒介。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How plastic litter sunk by biofouling recovers buoyancy - The role of benthic predation.

Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信