{"title":"温度对新出现的橄榄果病原体 Colletotrichum fioriniae 的体外发芽和生长的影响。","authors":"Federico Brugneti, Luca Rossini, Mounira Inas Drais, Silvia Turco, Angelo Mazzaglia","doi":"10.1111/1758-2229.13275","DOIUrl":null,"url":null,"abstract":"<p>Olive anthracnose induced by different <i>Colletotrichum</i> species causes dramatic losses of fruit yield and oil quality. The increasing incidence of <i>Colletotrichum fioriniae</i> (<i>Colletotrichum acutatum</i> species complex) as causal agent of olive anthracnose in Italy, is endorsing new studies on its biology, ecology, and environmental factors such as temperature. Five isolates from different sampling sites in Lazio region (Central Italy) were studied under controlled laboratory conditions aiming to better understand the differences of thermal development among the isolates and to lay the foundations of a future mathematical model able to describe the key aspects of the pathogen's life cycle. The mycelial growth rate and the conidial germination rate were assessed at seven different constant temperatures (5, 10, 15, 20, 25, 30, and 35°C) and fixed relative humidity (100% RH). The obtained dataset was analysed to estimate the parameters of mathematical functions that connect the mycelial growth rate and the spore germination with the environmental temperature. The parameters set provided as the result of this study constitute a key step forward in the biological knowledge of the species and the basis for future formulations of mathematical models that might be the core of decision support systems in an integrated pest management framework.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13275","citationCount":"0","resultStr":"{\"title\":\"Effect of temperature on in vitro germination and growth of Colletotrichum fioriniae, a new emerging pathogen of olive fruits\",\"authors\":\"Federico Brugneti, Luca Rossini, Mounira Inas Drais, Silvia Turco, Angelo Mazzaglia\",\"doi\":\"10.1111/1758-2229.13275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Olive anthracnose induced by different <i>Colletotrichum</i> species causes dramatic losses of fruit yield and oil quality. The increasing incidence of <i>Colletotrichum fioriniae</i> (<i>Colletotrichum acutatum</i> species complex) as causal agent of olive anthracnose in Italy, is endorsing new studies on its biology, ecology, and environmental factors such as temperature. Five isolates from different sampling sites in Lazio region (Central Italy) were studied under controlled laboratory conditions aiming to better understand the differences of thermal development among the isolates and to lay the foundations of a future mathematical model able to describe the key aspects of the pathogen's life cycle. The mycelial growth rate and the conidial germination rate were assessed at seven different constant temperatures (5, 10, 15, 20, 25, 30, and 35°C) and fixed relative humidity (100% RH). The obtained dataset was analysed to estimate the parameters of mathematical functions that connect the mycelial growth rate and the spore germination with the environmental temperature. The parameters set provided as the result of this study constitute a key step forward in the biological knowledge of the species and the basis for future formulations of mathematical models that might be the core of decision support systems in an integrated pest management framework.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13275\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13275\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13275","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of temperature on in vitro germination and growth of Colletotrichum fioriniae, a new emerging pathogen of olive fruits
Olive anthracnose induced by different Colletotrichum species causes dramatic losses of fruit yield and oil quality. The increasing incidence of Colletotrichum fioriniae (Colletotrichum acutatum species complex) as causal agent of olive anthracnose in Italy, is endorsing new studies on its biology, ecology, and environmental factors such as temperature. Five isolates from different sampling sites in Lazio region (Central Italy) were studied under controlled laboratory conditions aiming to better understand the differences of thermal development among the isolates and to lay the foundations of a future mathematical model able to describe the key aspects of the pathogen's life cycle. The mycelial growth rate and the conidial germination rate were assessed at seven different constant temperatures (5, 10, 15, 20, 25, 30, and 35°C) and fixed relative humidity (100% RH). The obtained dataset was analysed to estimate the parameters of mathematical functions that connect the mycelial growth rate and the spore germination with the environmental temperature. The parameters set provided as the result of this study constitute a key step forward in the biological knowledge of the species and the basis for future formulations of mathematical models that might be the core of decision support systems in an integrated pest management framework.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.