Beibei Wang, Yuhao Liu, Xueqian Chen, Xiao-Ting Liu, Zhongyi Liu and Chao Lu
{"title":"聚合诱导发射活性超分子聚合物:从受控制备到应用。","authors":"Beibei Wang, Yuhao Liu, Xueqian Chen, Xiao-Ting Liu, Zhongyi Liu and Chao Lu","doi":"10.1039/D3CS00017F","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and <em>in vitro</em> and <em>in vivo</em> imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 20","pages":" 10189-10215"},"PeriodicalIF":40.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications\",\"authors\":\"Beibei Wang, Yuhao Liu, Xueqian Chen, Xiao-Ting Liu, Zhongyi Liu and Chao Lu\",\"doi\":\"10.1039/D3CS00017F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and <em>in vitro</em> and <em>in vivo</em> imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.</p>\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\" 20\",\"pages\":\" 10189-10215\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00017f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00017f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences