PHF16 在隐窝再生后恢复小鼠肠上皮细胞平衡的双重功能

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Jun-Yeong Ahn, Somi Kim, Chang Rok Kim, Ji-Hyun Lee, Jong Min Kim, Thomas M. Klompstra, Yoon Ha Choi, Yoon Jeon, Yongwoo Na, Jong-Seo Kim, Yuki Okada, Ho Lee, Ik Soo Kim, Jong Kyoung Kim, Bon-Kyoung Koo, Sung Hee Baek
{"title":"PHF16 在隐窝再生后恢复小鼠肠上皮细胞平衡的双重功能","authors":"Jun-Yeong Ahn, Somi Kim, Chang Rok Kim, Ji-Hyun Lee, Jong Min Kim, Thomas M. Klompstra, Yoon Ha Choi, Yoon Jeon, Yongwoo Na, Jong-Seo Kim, Yuki Okada, Ho Lee, Ik Soo Kim, Jong Kyoung Kim, Bon-Kyoung Koo, Sung Hee Baek","doi":"10.1016/j.devcel.2024.08.009","DOIUrl":null,"url":null,"abstract":"<p>Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In <em>Phf16</em><sup><em>−/Y</em></sup> mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of <em>Phf16</em><sup><em>−/Y</em></sup> intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual function of PHF16 in reinstating homeostasis of murine intestinal epithelium after crypt regeneration\",\"authors\":\"Jun-Yeong Ahn, Somi Kim, Chang Rok Kim, Ji-Hyun Lee, Jong Min Kim, Thomas M. Klompstra, Yoon Ha Choi, Yoon Jeon, Yongwoo Na, Jong-Seo Kim, Yuki Okada, Ho Lee, Ik Soo Kim, Jong Kyoung Kim, Bon-Kyoung Koo, Sung Hee Baek\",\"doi\":\"10.1016/j.devcel.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In <em>Phf16</em><sup><em>−/Y</em></sup> mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of <em>Phf16</em><sup><em>−/Y</em></sup> intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.</p>\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2024.08.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.08.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠道干细胞(ISC)极易受到损伤,处于持续增殖状态。后备干细胞可在ISC受到损伤后修复肠上皮细胞。在这里,我们报告了表观遗传调节因子植物同源结构域(PHD)手指蛋白16(PHF16)在最初的损伤诱导修复后恢复了肠上皮细胞的平衡。通过单细胞RNA测序(scRNA-seq)观察发现,在Phf16-/Y小鼠中,复苏干细胞(revSCs)在退出再生状态时表现出缺陷,即使revSCs仍能对组织损伤做出诱导反应,肠隐窝再生也失败了。通过RNA测序(RNA-seq)和ATAC测序对Phf16-/Y肠器官组织进行分析发现,PHF16通过HBO1介导的组蛋白H3K14乙酰化诱导视黄酸受体(RAR)/视黄酸X受体(RXR)靶基因,同时通过泛素化CDC73抵消YAP/TAZ的活性,从而恢复肠上皮细胞的稳态。总之,我们的研究结果证明了 PHF16 及时抑制再生活性对于急性组织损伤后恢复肠道稳态的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual function of PHF16 in reinstating homeostasis of murine intestinal epithelium after crypt regeneration

Dual function of PHF16 in reinstating homeostasis of murine intestinal epithelium after crypt regeneration

Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In Phf16−/Y mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of Phf16−/Y intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信