Laura van Rosmalen, Jiaoyue Zhu, Geraldine Maier, Erica G. Gacasan, Terry Lin, Elena Zhemchuzhnikova, Vince Rothenberg, Swithin Razu, Shaunak Deota, Ramesh K. Ramasamy, Robert L. Sah, Andrew D. McCulloch, Roelof A. Hut, Satchidananda Panda
{"title":"运动中能量相对缺乏小鼠模型的多器官转录组图谱","authors":"Laura van Rosmalen, Jiaoyue Zhu, Geraldine Maier, Erica G. Gacasan, Terry Lin, Elena Zhemchuzhnikova, Vince Rothenberg, Swithin Razu, Shaunak Deota, Ramesh K. Ramasamy, Robert L. Sah, Andrew D. McCulloch, Roelof A. Hut, Satchidananda Panda","doi":"10.1016/j.cmet.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p>Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the “exercise-for-food” paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport\",\"authors\":\"Laura van Rosmalen, Jiaoyue Zhu, Geraldine Maier, Erica G. Gacasan, Terry Lin, Elena Zhemchuzhnikova, Vince Rothenberg, Swithin Razu, Shaunak Deota, Ramesh K. Ramasamy, Robert L. Sah, Andrew D. McCulloch, Roelof A. Hut, Satchidananda Panda\",\"doi\":\"10.1016/j.cmet.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the “exercise-for-food” paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.08.001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.08.001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport
Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the “exercise-for-food” paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.