Dongchang Zhao, Visweswaran Ravikumar, Tyler J. Leach, Daniel Kraushaar, Emma Lauder, Lu Li, Yaping Sun, Katherine Oravecz-Wilson, Evan T. Keller, Fengju Chen, Laure Maneix, Robert R. Jenq, Robert Britton, Katherine Y. King, Ana E. Santibanez, Chad J. Creighton, Arvind Rao, Pavan Reddy
{"title":"炎症诱导的表观遗传印记调控肠道干细胞","authors":"Dongchang Zhao, Visweswaran Ravikumar, Tyler J. Leach, Daniel Kraushaar, Emma Lauder, Lu Li, Yaping Sun, Katherine Oravecz-Wilson, Evan T. Keller, Fengju Chen, Laure Maneix, Robert R. Jenq, Robert Britton, Katherine Y. King, Ana E. Santibanez, Chad J. Creighton, Arvind Rao, Pavan Reddy","doi":"10.1016/j.stem.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5<sup>+</sup> ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and <em>in vivo</em> models, we found that Lgr5<sup>+</sup> ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate <em>ex vivo</em> in serial organoid cultures and also <em>in vivo</em> following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for <em>in vivo</em> regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflammation-induced epigenetic imprinting regulates intestinal stem cells\",\"authors\":\"Dongchang Zhao, Visweswaran Ravikumar, Tyler J. Leach, Daniel Kraushaar, Emma Lauder, Lu Li, Yaping Sun, Katherine Oravecz-Wilson, Evan T. Keller, Fengju Chen, Laure Maneix, Robert R. Jenq, Robert Britton, Katherine Y. King, Ana E. Santibanez, Chad J. Creighton, Arvind Rao, Pavan Reddy\",\"doi\":\"10.1016/j.stem.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5<sup>+</sup> ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and <em>in vivo</em> models, we found that Lgr5<sup>+</sup> ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate <em>ex vivo</em> in serial organoid cultures and also <em>in vivo</em> following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for <em>in vivo</em> regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.08.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.08.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.