Minhan Cheng, Yifei Yuan, Qianyang Li, Chuanliang Chen, Jie Chen, Ke Tian, Mao Zhang, Qiang Fu, Hua Deng
{"title":"基于聚酰亚胺气凝胶的电容式压力传感器,灵敏度和耐温性更强","authors":"Minhan Cheng, Yifei Yuan, Qianyang Li, Chuanliang Chen, Jie Chen, Ke Tian, Mao Zhang, Qiang Fu, Hua Deng","doi":"10.1016/j.jmst.2024.08.015","DOIUrl":null,"url":null,"abstract":"<p>The development of intelligent electronic power systems necessitates advanced flexible pressure sensors. Despite improved compressibility through surface micro-structures or bulk pores, conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers. Herein, we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression. The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets, which interact with polymer molecular chains. The resulting aerogels, with their excellent temperature resistance, were used to assemble high-performance capacitive pressure sensors. The sensor exhibits a maximum sensitivity of 1.41 kPa<sup>−1</sup> over a wide working range of 0-200 kPa. Meanwhile, the sensor can operate in environments up to 150°C during 2000 compression/release cycles. Furthermore, the aerogel-based sensor demonstrates proximity sensing capabilities, showing great potential for applications in non-contact sensing and extreme environment detection.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyimide aerogel-based capacitive pressure sensor with enhanced sensitivity and temperature resistance\",\"authors\":\"Minhan Cheng, Yifei Yuan, Qianyang Li, Chuanliang Chen, Jie Chen, Ke Tian, Mao Zhang, Qiang Fu, Hua Deng\",\"doi\":\"10.1016/j.jmst.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of intelligent electronic power systems necessitates advanced flexible pressure sensors. Despite improved compressibility through surface micro-structures or bulk pores, conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers. Herein, we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression. The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets, which interact with polymer molecular chains. The resulting aerogels, with their excellent temperature resistance, were used to assemble high-performance capacitive pressure sensors. The sensor exhibits a maximum sensitivity of 1.41 kPa<sup>−1</sup> over a wide working range of 0-200 kPa. Meanwhile, the sensor can operate in environments up to 150°C during 2000 compression/release cycles. Furthermore, the aerogel-based sensor demonstrates proximity sensing capabilities, showing great potential for applications in non-contact sensing and extreme environment detection.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.015\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyimide aerogel-based capacitive pressure sensor with enhanced sensitivity and temperature resistance
The development of intelligent electronic power systems necessitates advanced flexible pressure sensors. Despite improved compressibility through surface micro-structures or bulk pores, conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers. Herein, we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression. The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets, which interact with polymer molecular chains. The resulting aerogels, with their excellent temperature resistance, were used to assemble high-performance capacitive pressure sensors. The sensor exhibits a maximum sensitivity of 1.41 kPa−1 over a wide working range of 0-200 kPa. Meanwhile, the sensor can operate in environments up to 150°C during 2000 compression/release cycles. Furthermore, the aerogel-based sensor demonstrates proximity sensing capabilities, showing great potential for applications in non-contact sensing and extreme environment detection.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.