用于光学生物标记监测的超薄有机-无机集成装置

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kyung Yeun Kim, Joohyuk Kang, Sangmin Song, Kyungwoo Lee, Suk-Won Hwang, Seung Hwan Ko, Hojeong Jeon, Jae-Hoon Han, Wonryung Lee
{"title":"用于光学生物标记监测的超薄有机-无机集成装置","authors":"Kyung Yeun Kim, Joohyuk Kang, Sangmin Song, Kyungwoo Lee, Suk-Won Hwang, Seung Hwan Ko, Hojeong Jeon, Jae-Hoon Han, Wonryung Lee","doi":"10.1038/s41928-024-01237-6","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors can be used in wearable sensors to amplify biological signals. Other wireless communication systems are required for applications in continuous health monitoring. However, conventional wireless communication circuits, which are based on inorganic integrated chips, face limitations in terms of conformability due to the thick and rigid integrated circuit chips. Here, we report an ultrathin organic–inorganic device for wireless optical monitoring of biomarkers, such as glucose in sweat and glucose, lactate and pH in phosphate-buffered saline. The conformable system integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate. The device has an overall thickness of 4 μm. The channel current of the transistor changes according to the biomarker concentration, which alters the irradiance from the light-emitting diode to enable biomarker monitoring. We combine the device with an elastomeric battery circuit to create a wearable patch. We also show that the system can be used for near-infrared image analysis. A wireless monitoring system that integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate can be used to monitor biomarkers such as glucose, lactate and pH.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"914-923"},"PeriodicalIF":33.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultrathin organic–inorganic integrated device for optical biomarker monitoring\",\"authors\":\"Kyung Yeun Kim, Joohyuk Kang, Sangmin Song, Kyungwoo Lee, Suk-Won Hwang, Seung Hwan Ko, Hojeong Jeon, Jae-Hoon Han, Wonryung Lee\",\"doi\":\"10.1038/s41928-024-01237-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic electrochemical transistors can be used in wearable sensors to amplify biological signals. Other wireless communication systems are required for applications in continuous health monitoring. However, conventional wireless communication circuits, which are based on inorganic integrated chips, face limitations in terms of conformability due to the thick and rigid integrated circuit chips. Here, we report an ultrathin organic–inorganic device for wireless optical monitoring of biomarkers, such as glucose in sweat and glucose, lactate and pH in phosphate-buffered saline. The conformable system integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate. The device has an overall thickness of 4 μm. The channel current of the transistor changes according to the biomarker concentration, which alters the irradiance from the light-emitting diode to enable biomarker monitoring. We combine the device with an elastomeric battery circuit to create a wearable patch. We also show that the system can be used for near-infrared image analysis. A wireless monitoring system that integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate can be used to monitor biomarkers such as glucose, lactate and pH.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"7 10\",\"pages\":\"914-923\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01237-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01237-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有机电化学晶体管可用于可穿戴式传感器,以放大生物信号。持续健康监测应用还需要其他无线通信系统。然而,传统的无线通信电路以无机集成芯片为基础,由于集成电路芯片又厚又硬,在适配性方面受到限制。在此,我们报告了一种超薄有机无机设备,用于无线光学监测生物标志物,如汗液中的葡萄糖和磷酸盐缓冲盐水中的葡萄糖、乳酸盐和 pH 值。这种可适配系统将一个有机电化学晶体管和一个近红外无机微发光二极管集成在一个薄的对二甲苯衬底上。该器件的整体厚度为 4 微米。晶体管的沟道电流随生物标记物浓度的变化而变化,从而改变发光二极管的辐照度,实现生物标记物监测。我们将该装置与弹性电池电路相结合,创造出一种可穿戴的贴片。我们还展示了该系统可用于近红外图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An ultrathin organic–inorganic integrated device for optical biomarker monitoring

An ultrathin organic–inorganic integrated device for optical biomarker monitoring

An ultrathin organic–inorganic integrated device for optical biomarker monitoring
Organic electrochemical transistors can be used in wearable sensors to amplify biological signals. Other wireless communication systems are required for applications in continuous health monitoring. However, conventional wireless communication circuits, which are based on inorganic integrated chips, face limitations in terms of conformability due to the thick and rigid integrated circuit chips. Here, we report an ultrathin organic–inorganic device for wireless optical monitoring of biomarkers, such as glucose in sweat and glucose, lactate and pH in phosphate-buffered saline. The conformable system integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate. The device has an overall thickness of 4 μm. The channel current of the transistor changes according to the biomarker concentration, which alters the irradiance from the light-emitting diode to enable biomarker monitoring. We combine the device with an elastomeric battery circuit to create a wearable patch. We also show that the system can be used for near-infrared image analysis. A wireless monitoring system that integrates an organic electrochemical transistor and a near-infrared inorganic micro-light-emitting diode on a thin parylene substrate can be used to monitor biomarkers such as glucose, lactate and pH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信