Gurupada Maity, Prashant Kumar Mishra, Geetika Patel and Santosh Dubey
{"title":"基于硼吩的光电探测器在实现可持续未来方面的进展:全面回顾","authors":"Gurupada Maity, Prashant Kumar Mishra, Geetika Patel and Santosh Dubey","doi":"10.1039/D4NR02638A","DOIUrl":null,"url":null,"abstract":"<p >Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 39","pages":" 18295-18318"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in borophene based photodetectors for a sustainable tomorrow: a comprehensive review\",\"authors\":\"Gurupada Maity, Prashant Kumar Mishra, Geetika Patel and Santosh Dubey\",\"doi\":\"10.1039/D4NR02638A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 39\",\"pages\":\" 18295-18318\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr02638a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr02638a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in borophene based photodetectors for a sustainable tomorrow: a comprehensive review
Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.