利用多模态磁共振成像和深度学习框架检测局灶性皮质发育不良(II 型

Anand Shankar, Manob Jyoti Saikia, Samarendra Dandapat, Shovan Barma
{"title":"利用多模态磁共振成像和深度学习框架检测局灶性皮质发育不良(II 型","authors":"Anand Shankar, Manob Jyoti Saikia, Samarendra Dandapat, Shovan Barma","doi":"10.1038/s44303-024-00031-5","DOIUrl":null,"url":null,"abstract":"Focal cortical dysplasia type II (FCD-II) is a prominent cortical development malformation associated with drug-resistant epileptic seizures that leads to lifelong cognitive impairment. Efficient MRI, followed by its analysis (e.g., cortical abnormality distinction, precise localization assistance, etc.) plays a crucial role in the diagnosis and supervision (e.g., presurgery planning and postoperative care) of FCD-II. Involving machine learning techniques particularly, deep-learning (DL) approaches, could enable more effective analysis techniques. We performed a comprehensive study by choosing six different well-known DL models, three image planes (axial, coronal, and sagittal) of two MRI modalities (T1w and FLAIR), demographic characteristics (age and sex) and clinical characteristics (brain hemisphere and lobes) to identify a suitable DL model for analysing FCD-II. The outcomes show that the DenseNet201 model is more suitable because of its superior classification accuracy, high-precision, F1-score, and large area under the receiver operating characteristic (ROC) curve and precision–recall (PR) curve.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00031-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Focal cortical dysplasia (type II) detection with multi-modal MRI and a deep-learning framework\",\"authors\":\"Anand Shankar, Manob Jyoti Saikia, Samarendra Dandapat, Shovan Barma\",\"doi\":\"10.1038/s44303-024-00031-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focal cortical dysplasia type II (FCD-II) is a prominent cortical development malformation associated with drug-resistant epileptic seizures that leads to lifelong cognitive impairment. Efficient MRI, followed by its analysis (e.g., cortical abnormality distinction, precise localization assistance, etc.) plays a crucial role in the diagnosis and supervision (e.g., presurgery planning and postoperative care) of FCD-II. Involving machine learning techniques particularly, deep-learning (DL) approaches, could enable more effective analysis techniques. We performed a comprehensive study by choosing six different well-known DL models, three image planes (axial, coronal, and sagittal) of two MRI modalities (T1w and FLAIR), demographic characteristics (age and sex) and clinical characteristics (brain hemisphere and lobes) to identify a suitable DL model for analysing FCD-II. The outcomes show that the DenseNet201 model is more suitable because of its superior classification accuracy, high-precision, F1-score, and large area under the receiver operating characteristic (ROC) curve and precision–recall (PR) curve.\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44303-024-00031-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44303-024-00031-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00031-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局灶性皮质发育不良 II 型(FCD-II)是一种突出的皮质发育畸形,与耐药性癫痫发作有关,会导致终生认知障碍。高效的核磁共振成像及其分析(如区分皮质异常、协助精确定位等)在 FCD-II 的诊断和监护(如手术前规划和术后护理)中发挥着至关重要的作用。采用机器学习技术,特别是深度学习(DL)方法,可以实现更有效的分析技术。我们进行了一项综合研究,选择了六种不同的知名 DL 模型、两种 MRI 模式(T1w 和 FLAIR)的三种图像平面(轴位、冠状位和矢状位)、人口统计学特征(年龄和性别)和临床特征(大脑半球和脑叶),以确定适合分析 FCD-II 的 DL 模型。结果表明,DenseNet201 模型因其卓越的分类准确性、高精确度、F1-分数、较大的接收者操作特征曲线(ROC)下面积和精确度-召回(PR)曲线而更为合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Focal cortical dysplasia (type II) detection with multi-modal MRI and a deep-learning framework

Focal cortical dysplasia (type II) detection with multi-modal MRI and a deep-learning framework
Focal cortical dysplasia type II (FCD-II) is a prominent cortical development malformation associated with drug-resistant epileptic seizures that leads to lifelong cognitive impairment. Efficient MRI, followed by its analysis (e.g., cortical abnormality distinction, precise localization assistance, etc.) plays a crucial role in the diagnosis and supervision (e.g., presurgery planning and postoperative care) of FCD-II. Involving machine learning techniques particularly, deep-learning (DL) approaches, could enable more effective analysis techniques. We performed a comprehensive study by choosing six different well-known DL models, three image planes (axial, coronal, and sagittal) of two MRI modalities (T1w and FLAIR), demographic characteristics (age and sex) and clinical characteristics (brain hemisphere and lobes) to identify a suitable DL model for analysing FCD-II. The outcomes show that the DenseNet201 model is more suitable because of its superior classification accuracy, high-precision, F1-score, and large area under the receiver operating characteristic (ROC) curve and precision–recall (PR) curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信