{"title":"基于谐波成分的配电网电缆绝缘劣化状态带电检测技术研究","authors":"Ran Hu, Haisong Xu, Xu Lu, Anzhe Wang, Zhifeng Xu, Yuli Wang, Daning Zhang","doi":"10.1049/gtd2.13238","DOIUrl":null,"url":null,"abstract":"<p>Due to the limitations imposed by urban power grid outages for maintenance, on-line harmonic current detection technology for distribution network cables is expected to become an effective supplement to traditional offline diagnostic methods, enhancing the real-time diagnosis of distribution network cable insulation conditions. This study established a 10 kV distribution network cable test platform and prepared typical defective cables subjected to moisture and long-term thermal aging. Using COMSOL finite element electromagnetic simulation, the magnetic flux evolution laws of the cable insulation under typical defects were obtained. Experimental tests provided the harmonic current characteristics and statistical features of cables with typical defects. Based on these data, a method for analysing the degradation degree of distribution network cables was constructed using least absolute shrinkage and selection operator (LASSO) regression analysis. Furthermore, a defect-type identification method based on cluster analysis was proposed. Results indicate that the odd harmonics and the 4th harmonic of the distribution network cable's harmonic current are closely related to the cable's degradation state. A model integrating principal component analysis (PCA) data dimensionality reduction and expectation-maximization clustering analysis achieved a recognition accuracy of up to 75.64% in distinguishing between moisture-affected and normal cable states. The proposed on-line detection and evaluation methods can effectively identify high-risk cables with latent defects.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13238","citationCount":"0","resultStr":"{\"title\":\"Research on live detection technology of distribution network cable insulation deterioration state based on harmonic components\",\"authors\":\"Ran Hu, Haisong Xu, Xu Lu, Anzhe Wang, Zhifeng Xu, Yuli Wang, Daning Zhang\",\"doi\":\"10.1049/gtd2.13238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the limitations imposed by urban power grid outages for maintenance, on-line harmonic current detection technology for distribution network cables is expected to become an effective supplement to traditional offline diagnostic methods, enhancing the real-time diagnosis of distribution network cable insulation conditions. This study established a 10 kV distribution network cable test platform and prepared typical defective cables subjected to moisture and long-term thermal aging. Using COMSOL finite element electromagnetic simulation, the magnetic flux evolution laws of the cable insulation under typical defects were obtained. Experimental tests provided the harmonic current characteristics and statistical features of cables with typical defects. Based on these data, a method for analysing the degradation degree of distribution network cables was constructed using least absolute shrinkage and selection operator (LASSO) regression analysis. Furthermore, a defect-type identification method based on cluster analysis was proposed. Results indicate that the odd harmonics and the 4th harmonic of the distribution network cable's harmonic current are closely related to the cable's degradation state. A model integrating principal component analysis (PCA) data dimensionality reduction and expectation-maximization clustering analysis achieved a recognition accuracy of up to 75.64% in distinguishing between moisture-affected and normal cable states. The proposed on-line detection and evaluation methods can effectively identify high-risk cables with latent defects.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Research on live detection technology of distribution network cable insulation deterioration state based on harmonic components
Due to the limitations imposed by urban power grid outages for maintenance, on-line harmonic current detection technology for distribution network cables is expected to become an effective supplement to traditional offline diagnostic methods, enhancing the real-time diagnosis of distribution network cable insulation conditions. This study established a 10 kV distribution network cable test platform and prepared typical defective cables subjected to moisture and long-term thermal aging. Using COMSOL finite element electromagnetic simulation, the magnetic flux evolution laws of the cable insulation under typical defects were obtained. Experimental tests provided the harmonic current characteristics and statistical features of cables with typical defects. Based on these data, a method for analysing the degradation degree of distribution network cables was constructed using least absolute shrinkage and selection operator (LASSO) regression analysis. Furthermore, a defect-type identification method based on cluster analysis was proposed. Results indicate that the odd harmonics and the 4th harmonic of the distribution network cable's harmonic current are closely related to the cable's degradation state. A model integrating principal component analysis (PCA) data dimensionality reduction and expectation-maximization clustering analysis achieved a recognition accuracy of up to 75.64% in distinguishing between moisture-affected and normal cable states. The proposed on-line detection and evaluation methods can effectively identify high-risk cables with latent defects.