试验性洪水序列中的沉积物存储和冲积物迁移联系

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Marwan A. Hassan, J. Kevin Pierce, Shawn M. Chartrand
{"title":"试验性洪水序列中的沉积物存储和冲积物迁移联系","authors":"Marwan A. Hassan,&nbsp;J. Kevin Pierce,&nbsp;Shawn M. Chartrand","doi":"10.1029/2024JF007772","DOIUrl":null,"url":null,"abstract":"<p>River channels are maintained by coordination between flow hydraulics, sediment supply, riparian vegetation, and sediment transport. This coordination is challenging to understand in natural flow regimes, where climatic and environmental drivers produce episodic flood and sediment supply events. To better understand the response of channels to flood sequences, we have undertaken laboratory flume experiments on sediment storage and export across a sequence of alternating hydrographs. Our experiments indicate that accumulated sediment storage before floods predicts sediment transport during floods, with sediment storage depletion during floods causing a nonlinear variation of sediment-transport rates through time. Likewise, sediment storage between floods follows a growth-to-saturation pattern, whereby the sediment transport gradually increases toward the sediment feed rate depending on the occupation of available sediment storage zones. To describe these non-linear variations, we developed a mathematical model which represents sediment transport and storage as a coupled dynamical system. This work highlights the crucial role that within-channel sediment storage and its history play in determining sediment export in rivers.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment Storage and Fluvial Sediment Transport Linkages Across an Experimental Flood Sequence\",\"authors\":\"Marwan A. Hassan,&nbsp;J. Kevin Pierce,&nbsp;Shawn M. Chartrand\",\"doi\":\"10.1029/2024JF007772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>River channels are maintained by coordination between flow hydraulics, sediment supply, riparian vegetation, and sediment transport. This coordination is challenging to understand in natural flow regimes, where climatic and environmental drivers produce episodic flood and sediment supply events. To better understand the response of channels to flood sequences, we have undertaken laboratory flume experiments on sediment storage and export across a sequence of alternating hydrographs. Our experiments indicate that accumulated sediment storage before floods predicts sediment transport during floods, with sediment storage depletion during floods causing a nonlinear variation of sediment-transport rates through time. Likewise, sediment storage between floods follows a growth-to-saturation pattern, whereby the sediment transport gradually increases toward the sediment feed rate depending on the occupation of available sediment storage zones. To describe these non-linear variations, we developed a mathematical model which represents sediment transport and storage as a coupled dynamical system. This work highlights the crucial role that within-channel sediment storage and its history play in determining sediment export in rivers.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007772\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007772","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

河道是通过水流水力学、泥沙供应、河岸植被和泥沙输运之间的协调来维持的。在自然水流系统中,这种协调很难理解,因为在自然水流系统中,气候和环境因素会产生偶发性洪水和泥沙供应事件。为了更好地了解河道对洪水序列的响应,我们在实验室水槽中进行了一系列交替水文过程中的沉积物存储和输出实验。我们的实验表明,洪水前的累积沉积物储量可预测洪水期间的沉积物运移,洪水期间的沉积物储量耗竭会导致沉积物运移速率随时间发生非线性变化。同样,洪水间歇期的沉积物储量也遵循增长到饱和的模式,即根据可用沉积物储量区的占用情况,沉积物运移率逐渐向沉积物进给率方向增长。为了描述这些非线性变化,我们建立了一个数学模型,将泥沙输运和储存作为一个耦合动力系统来表示。这项工作强调了河道内泥沙存储及其历史在决定河流泥沙输出中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sediment Storage and Fluvial Sediment Transport Linkages Across an Experimental Flood Sequence

River channels are maintained by coordination between flow hydraulics, sediment supply, riparian vegetation, and sediment transport. This coordination is challenging to understand in natural flow regimes, where climatic and environmental drivers produce episodic flood and sediment supply events. To better understand the response of channels to flood sequences, we have undertaken laboratory flume experiments on sediment storage and export across a sequence of alternating hydrographs. Our experiments indicate that accumulated sediment storage before floods predicts sediment transport during floods, with sediment storage depletion during floods causing a nonlinear variation of sediment-transport rates through time. Likewise, sediment storage between floods follows a growth-to-saturation pattern, whereby the sediment transport gradually increases toward the sediment feed rate depending on the occupation of available sediment storage zones. To describe these non-linear variations, we developed a mathematical model which represents sediment transport and storage as a coupled dynamical system. This work highlights the crucial role that within-channel sediment storage and its history play in determining sediment export in rivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信