用光谱法近似求解布拉修斯问题

Q1 Mathematics
Zunera Shoukat , Azad Akhter Siddiqui , M. Huzaifa Yaseen , M. Ijaz Khan , Barno Sayfutdinovna Abdullaeva , M. Waqas , Manish Gupta
{"title":"用光谱法近似求解布拉修斯问题","authors":"Zunera Shoukat ,&nbsp;Azad Akhter Siddiqui ,&nbsp;M. Huzaifa Yaseen ,&nbsp;M. Ijaz Khan ,&nbsp;Barno Sayfutdinovna Abdullaeva ,&nbsp;M. Waqas ,&nbsp;Manish Gupta","doi":"10.1016/j.padiff.2024.100896","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims at finding the numerical approximation of a classical Blasius flat plate problem using spectral collocation method. This technique is based on Chebyshev pseudospectral approach that involves the solution is approximated using Chebyshev polynomials, which are orthogonal polynomials defined on the interval [−1, 1]. The Chebyshev pseudospectral method employs Chebyshev- Gauss- Lobatto points, the extrema of the Chebyshev polynomials. The differential equation is approximated as a sum of Chebyshev polynomials. A differentiation matrix, based on these polynomials and their derivatives at the collocation points, transforms the differential equation into a system of algebraic equations. By evaluating the differential equation at these points and applying boundary conditions, the original boundary value problem reduced the solution to the solution of a system of algebraic equations. Solving for the coefficients of the polynomials yields the numerical approximation of the solution. The implementation of this method is carried out in Mathematica and its validity is ensured by comparing it with a built in MATLAB numerical routine called bvp4c.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"11 ","pages":"Article 100896"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002821/pdfft?md5=36161a19118deb4c8e95c0984c485a80&pid=1-s2.0-S2666818124002821-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An approximate solution of the Blasius problem using spectral method\",\"authors\":\"Zunera Shoukat ,&nbsp;Azad Akhter Siddiqui ,&nbsp;M. Huzaifa Yaseen ,&nbsp;M. Ijaz Khan ,&nbsp;Barno Sayfutdinovna Abdullaeva ,&nbsp;M. Waqas ,&nbsp;Manish Gupta\",\"doi\":\"10.1016/j.padiff.2024.100896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims at finding the numerical approximation of a classical Blasius flat plate problem using spectral collocation method. This technique is based on Chebyshev pseudospectral approach that involves the solution is approximated using Chebyshev polynomials, which are orthogonal polynomials defined on the interval [−1, 1]. The Chebyshev pseudospectral method employs Chebyshev- Gauss- Lobatto points, the extrema of the Chebyshev polynomials. The differential equation is approximated as a sum of Chebyshev polynomials. A differentiation matrix, based on these polynomials and their derivatives at the collocation points, transforms the differential equation into a system of algebraic equations. By evaluating the differential equation at these points and applying boundary conditions, the original boundary value problem reduced the solution to the solution of a system of algebraic equations. Solving for the coefficients of the polynomials yields the numerical approximation of the solution. The implementation of this method is carried out in Mathematica and its validity is ensured by comparing it with a built in MATLAB numerical routine called bvp4c.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"11 \",\"pages\":\"Article 100896\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002821/pdfft?md5=36161a19118deb4c8e95c0984c485a80&pid=1-s2.0-S2666818124002821-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在使用谱配位法对经典的 Blasius 平板问题进行数值逼近。该技术基于切比雪夫伪谱法,即使用切比雪夫多项式近似求解,切比雪夫多项式是定义在区间[-1, 1]上的正交多项式。切比雪夫伪谱法采用切比雪夫-高斯-洛巴托点,即切比雪夫多项式的极值。微分方程近似为切比雪夫多项式之和。微分矩阵基于这些多项式及其在配点处的导数,将微分方程转换为代数方程系。通过对这些点上的微分方程进行求值并应用边界条件,原来的边界值问题就简化为代数方程系的求解。求解多项式的系数即可得到解的数值近似值。该方法在 Mathematica 中实现,并通过与 MATLAB 中名为 bvp4c 的内置数值例程进行比较来确保其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximate solution of the Blasius problem using spectral method

This paper aims at finding the numerical approximation of a classical Blasius flat plate problem using spectral collocation method. This technique is based on Chebyshev pseudospectral approach that involves the solution is approximated using Chebyshev polynomials, which are orthogonal polynomials defined on the interval [−1, 1]. The Chebyshev pseudospectral method employs Chebyshev- Gauss- Lobatto points, the extrema of the Chebyshev polynomials. The differential equation is approximated as a sum of Chebyshev polynomials. A differentiation matrix, based on these polynomials and their derivatives at the collocation points, transforms the differential equation into a system of algebraic equations. By evaluating the differential equation at these points and applying boundary conditions, the original boundary value problem reduced the solution to the solution of a system of algebraic equations. Solving for the coefficients of the polynomials yields the numerical approximation of the solution. The implementation of this method is carried out in Mathematica and its validity is ensured by comparing it with a built in MATLAB numerical routine called bvp4c.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信